Some Notes on Deep CCA
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1 CCA

Let X € RN and Y € R¥*Y denote two views of N samples. Let ux and px denote
the column means of X and Y and assume the following centered, scaled matrices

X = o (X - x) Y = (V)

where matrix-vector subtraction is understood as columnwise. Then the cross-covariance
and covariance matrices (omitting regularization) are estimated by

Cxy = XY ' Cx = XX ' Cy =YY

Given m < min(d,d’), CCA calculates m-dimensional representions of the two views
X e RN and Y € R™*V by

X=A"X Y=B'Y

where A = C;/2Um and B = C;,l/QVm. The columns of U,, € R¥*™ and V,, € R xm
are the left /right singular vectors of

Q- C;(l/zCXYC;l/Q
corresponding to the m largest singular values 1 > 01(Q2) > -+ > 0,,(Q2): each 0;(€) is
precisely the i-th canonical correlation defined in the original formulation of CCA (i.e.,
as an iterative optimization problem). Check that these representations satisfy

XX'=YY'=1I, XY =diag(01()...01(R))

Because of the variational characterization of singular vectors (Theorem A.2), we can
equivalently state that U,,, V,, are a solution of

m

max tr ((/jTQ‘A/) = 0 ()
Oer>™: 07 0=1,, ; '
Ver? xm: 9TV =1,

such that the columns ordered corresponding to nonincreasing singular values. To see

why the maximum is achieved at > ., 0;(€2), see the proof of the theorem.
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2 Deep CCA

In deep CCA [1], we assume that data matrices are already transformed by differentiable
parameters to the target dimension m before considering the CCA objective. To be
concrete, assume parameters Wy € R™*? and W, € R™*¢ yielding X,Y € R™*V by

X = tanh(W; X) Y = tanh(W,Y)

where in this case we change our notation and write X € RN and Y € RN to
denote the original data matrices. As before, let 2 € R™*™ denote the correlation
matrix resulting from these matrices (the operations involved in calculating € are all
fully differentiable). Now we consider the CCA objective and note that the optimum

m
omax e (07QV) =Y ai(@) = I2l),
UeR™ ™. UTU=I,, =
Ver? xm: ¥TV=1,,
coincides with the nuclear norm of € because this is the sum of all singular values of €2

1/2

without truncation. A main reason to prefer the nuclear norm |||, := tr ((QTQ) ) for

differentiability is that it is given by the trace operator which has many nice differentiable
properties (e.g., see here). The matrix gradients

a”slHl €RmXN 8”(}”1 €Rm><N
0X Y
are given by an SVD of 2. So this can be viewed as a final node in the computation graph

with X, Y as parents whose forward and backward passes are calculated by an SVD.

So all we’re doing is updating parameters W and W5 by taking gradient steps on ||Q||;,
which is a function of these parameters. There is no explicit CCA calculation during
training! Rather, they are trained to maximize the objective of an implicit trivial CCA
(i-e., involving no dimensionality reduction) on top of the representations they induce.
Thus to calculate correlations, we need to explicitly perform a trivial CCA after training
to obtain actual CCA projection matrices A, B € R"™*™. We would then calculate the
sum of canonical correlations on the training data as follows:

1. Apply the trained W, and W, to obtain m-dimensional data X, Y € R™*N,

2. Apply the CCA projection matrices A, B € R™*™ and return tr (ATX'YTB).

One final note: the deep CCA objective does not decompose over samples and invalidates
the correctness of stochastic gradient descent. This issue is examined more closely in
follow-up works [4, 3].
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https://en.wikipedia.org/wiki/Matrix_calculus#Scalar-by-matrix_identities

A Matrix Facts

A.1 Trace
Theorem A.1 (Von Neumann, 7.4.11 in [2]). Let A,B € R™*™ where m < n. Let
01(A) > -+ > 0,,(A) denote the m largest singular values of A in nonincreasing order

(likewise for B). Then

m

tr (ABT) <> 0i(A)oi(B)

i=1

A.2 SVD

Theorem A.2. Let A € R™*™ where m < n. For any k < m,
Uk, Vi) € argmax  tr (ﬁTA‘A/)
ﬁERka: ﬁTﬁ:Ik

VER™ F. VT V=1,

where the columns of Uy € R™** and Vj, € R™** are the left and right singular vectors
of A corresponding to the largest k singular values.

Proof. For any orthonormal UeRm™Fk and V e R¥F,
N N N m R k
tr (UTAV) — tr (AVUT) <3 0 A)o(VTT) =3 ai(A)
i=1 i=1

To see the last equality, note that o;(VU ) = X\;(UUT)Y/2 where UU T is the projection
operator onto an k-dimensional subspace of R™. This upper bound is reached by taking
U=U;and V = V. O
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