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1 CCA

Let X ∈ Rd×N and Y ∈ Rd′×N denote two views of N samples. Let µX and µX denote
the column means of X and Y and assume the following centered, scaled matrices

ĎX =
1√
N

(X − µX) sY =
1√
N

(Y − µY )

where matrix-vector subtraction is understood as columnwise. Then the cross-covariance
and covariance matrices (omitting regularization) are estimated by

CXY = ĎX sY
>

CX = ĎXĎX
>

CY = sY sY
>

Given m ≤ min(d, d′), CCA calculates m-dimensional representions of the two views
X ∈ Rm×N and Y ∈ Rm×N by

X = A>ĎX Y = B> sY

where A = C
−1/2
X Um and B = C

−1/2
Y Vm. The columns of Um ∈ Rd×m and Vm ∈ Rd′×m

are the left/right singular vectors of

Ω = C
−1/2
X CXY C

−1/2
Y

corresponding to the m largest singular values 1 ≥ σ1(Ω) ≥ · · · ≥ σm(Ω): each σi(Ω) is
precisely the i-th canonical correlation defined in the original formulation of CCA (i.e.,
as an iterative optimization problem). Check that these representations satisfy

X X> = Y Y > = Im X Y > = diag (σ1(Ω) . . . σ1(Ω))

Because of the variational characterization of singular vectors (Theorem A.2), we can
equivalently state that Um, Vm are a solution of

max
Û∈Rd×m: Û>Û=Im

V̂ ∈Rd′×m: V̂ >V̂=Im

tr
(
Û>ΩV̂

)
=

m∑
i=1

σi(Ω)

such that the columns ordered corresponding to nonincreasing singular values. To see
why the maximum is achieved at

∑m
i=1 σi(Ω), see the proof of the theorem.
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2 Deep CCA

In deep CCA [1], we assume that data matrices are already transformed by differentiable
parameters to the target dimension m before considering the CCA objective. To be
concrete, assume parameters W1 ∈ Rm×d and W2 ∈ Rm×d′ yielding X,Y ∈ Rm×N by

X = tanh(W1X̃) Y = tanh(W2Ỹ )

where in this case we change our notation and write X̃ ∈ Rd×N and Ỹ ∈ Rd′×N to
denote the original data matrices. As before, let Ω ∈ Rm×m denote the correlation
matrix resulting from these matrices (the operations involved in calculating Ω are all
fully differentiable). Now we consider the CCA objective and note that the optimum

max
Û∈Rd×m: Û>Û=Im

V̂ ∈Rd′×m: V̂ >V̂=Im

tr
(
Û>ΩV̂

)
=

m∑
i=1

σi(Ω) = ||Ω||1

coincides with the nuclear norm of Ω because this is the sum of all singular values of Ω

without truncation. A main reason to prefer the nuclear norm ||Ω||1 := tr
(

(Ω>Ω)1/2
)

for

differentiability is that it is given by the trace operator which has many nice differentiable
properties (e.g., see here). The matrix gradients

∂ ||Ω||1
∂ĎX

∈ Rm×N ∂ ||Ω||1
∂ sY

∈ Rm×N

are given by an SVD of Ω. So this can be viewed as a final node in the computation graph
with ĎX, sY as parents whose forward and backward passes are calculated by an SVD.

So all we’re doing is updating parameters W1 and W2 by taking gradient steps on ||Ω||1,
which is a function of these parameters. There is no explicit CCA calculation during
training! Rather, they are trained to maximize the objective of an implicit trivial CCA
(i.e., involving no dimensionality reduction) on top of the representations they induce.
Thus to calculate correlations, we need to explicitly perform a trivial CCA after training
to obtain actual CCA projection matrices A,B ∈ Rm×m. We would then calculate the
sum of canonical correlations on the training data as follows:

1. Apply the trained W1 and W2 to obtain m-dimensional data X,Y ∈ Rm×N .

2. Apply the CCA projection matrices A,B ∈ Rm×m and return tr
(
A>ĎX sY

>
B
)

.

One final note: the deep CCA objective does not decompose over samples and invalidates
the correctness of stochastic gradient descent. This issue is examined more closely in
follow-up works [4, 3].
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A Matrix Facts

A.1 Trace

Theorem A.1 (Von Neumann, 7.4.11 in [2]). Let A,B ∈ Rm×n where m ≤ n. Let
σ1(A) ≥ · · · ≥ σm(A) denote the m largest singular values of A in nonincreasing order
(likewise for B). Then

tr
(
AB>

)
≤

m∑
i=1

σi(A)σi(B)

A.2 SVD

Theorem A.2. Let A ∈ Rm×n where m ≤ n. For any k ≤ m,

(Uk, Vk) ∈ arg max
Û∈Rm×k: Û>Û=Ik
V̂ ∈Rn×k: V̂ >V̂=Ik

tr
(
Û>AV̂

)

where the columns of Uk ∈ Rm×k and Vk ∈ Rn×k are the left and right singular vectors
of A corresponding to the largest k singular values.

Proof. For any orthonormal Û ∈ Rm×k and V̂ ∈ Rn×k,

tr
(
Û>AV̂

)
= tr

(
AV̂ Û>

)
≤

m∑
i=1

σi(A)σi(V̂ Û
>) =

k∑
i=1

σi(A)

To see the last equality, note that σi(V̂ Û
>) = λi(Û Û

>)1/2 where Û Û> is the projection
operator onto an k-dimensional subspace of Rm. This upper bound is reached by taking
Û = Uk and V̂ = Vk.
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