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CHAPTER 1. A REVIEW OF LINEAR ALGEBRA 1

Chapter 1

A Review of Linear Algebra

1.1 Basic Concepts

In this section, we review basic concepts in linear algebra frequently invoked in spectral

techniques.

1.1.1 Vector Spaces and Euclidean Space

A vector space V over a field F of scalars is a set of “vectors”, entities with direction, closed

under addition and scalar multiplication satisfying certain axioms. It can be endowed with

an inner product 〈·, ·〉 : V × V → F , which is a quantatative measure of the relationship

between a pair of vectors (such as the angle). An inner product also induces a norm

||u|| =
√
〈u, u〉 which computes the magnitude of u. See Chapter 1.2 of Friedberg et al.

[2003] for a formal definition of a vector space and Chapter 2 of Prugovečki [1971] for a

formal definition of an inner product.

In subsequent sections, we focus on Euclidean space to illustrate key ideas associated

with a vector space. The n-dimensional (real-valued) Euclidean space Rn is a vector

space over R. The Euclidean inner product 〈·, ·〉 : Rn × Rn → R is defined as

〈u, v〉 := [u]1[v]1 + · · ·+ [u]n[v]n (1.1)

It is also called the dot product and written as u · v. The standard vector multiplication

notation u>v is sometimes used to denote the inner product.
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One use of the inner product is calculating the length (or norm) of a vector. By the

Pythagorean theorem, the length of u ∈ Rn is given by ||u||2 :=
√

[u]21 + . . .+ [u]2n and

called the Euclidean norm of u. Note that it can be calculated as

||u||2 =
√
〈u, u〉 (1.2)

Another use of the inner product is calculating the angle θ between two nonzero vectors.

This use is based on the following result.

Theorem 1.1.1. For nonzero u, v ∈ Rn with angle θ, 〈u, v〉 = ||u||2 ||v||2 cos θ.

Proof. Let w = u− v be the opposing side of θ. The law of cosines states that

||w||22 = ||u||22 + ||v||22 − 2 ||u||2 ||v||2 cos θ

But since ||w||22 = ||u||22 + ||v||22 − 2〈u, v〉, we conclude that 〈u, v〉 = ||u||2 ||v||2 cos θ.

The following corollaries are immediate from Theorem 1.1.1.

Corollary 1.1.2 (Orthogonality). Nonzero u, v ∈ Rn are orthogonal (i.e., their angle is

θ = π/2) iff 〈u, v〉 = 0.

Corollary 1.1.3 (Cauchy–Schwarz inequality). |〈u, v〉| ≤ ||u||2 ||v||2 for all u, v ∈ Rn.

1.1.2 Subspaces and Dimensions

A subspace S of Rn is a subset of Rn which is a vector space over R itself. A necessary and

sufficient condition for S ⊆ Rn to be a subspace is the following (Theorem 1.3, Friedberg et

al. [2003]):

1. 0 ∈ S

2. u+ v ∈ S whenever u, v ∈ S

3. au ∈ S whenever a ∈ R and u ∈ S

The condition implies that a subspace is always a “flat” (or linear) space passing through

the origin, such as infinite lines and planes (or the trivial subspace {0}).
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A set of vectors u1 . . . um ∈ Rn are called linearly dependent if there exist a1 . . . am ∈

R that are not all zero such that au1 +· · · aum = 0. They are linearly independent if they

are not linearly dependent. The dimension dim(S) of a subspace S ⊆ Rn is the number

of linearly independent vectors in S.

The span of u1 . . . um ∈ Rn is defined to be all their linear combinations:

span{u1 . . . um} :=

{
m∑
i=1

aiui

∣∣∣∣ ai ∈ R

}
(1.3)

which can be shown to be the smallest subspace of Rn containing u1 . . . um (Theorem 1.5,

Friedberg et al. [2003]).

The basis of a subspace S ⊆ Rn of dimension m is a set of linearly independent vectors

u1 . . . um ∈ Rn such that

S = span{u1 . . . um} (1.4)

In particular, u1 . . . um are called an orthonormal basis of S when they are orthogonal and

have length ||ui||2 = 1. We frequently parametrize an orthonormal basis as an orthonormal

matrix U = [u1 . . . um] ∈ Rn×m (U>U = Im×m).

Finally, given a subspace S ⊆ Rn of dimension m ≤ n, the corresponding orthogonal

complement S⊥ ⊆ Rn is defined as

S⊥ := {u ∈ Rn : u>v = 0 ∀v ∈ S}

It is easy to verify that the three subspace conditions hold, thus S⊥ is a subspace of Rn.

Furthermore, we always have dim(S) + dim(S⊥) = n (see Theorem 1.5, Friedberg et al.

[2003]), thus dim(S⊥) = n−m.

1.1.3 Matrices

A matrix A ∈ Rm×n defines a linear transformation from Rn to Rm. Given u ∈ Rn, the

transformation v = Au ∈ Rm can be thought of as either a linear combination of the

columns c1 . . . cn ∈ Rm of A, or dot products between the rows r1 . . . rm ∈ Rn of A and u:

v = [u]1c1 + · · ·+ [u]ncn =


r>1 u

...

r>mu

 (1.5)
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The range (or the column space) of A is defined as the span of the columns of A; the

row space of A is the column space of A>. The null space of A is defined as the set of

vectors u ∈ Rn such that Au = 0; the left null space of A is the null space of A>. We

denote them respectively by the following symbols:

range(A) = col(A) := {Au : u ∈ Rn} ⊆ Rm (1.6)

row(A) := col(A>) ⊆ Rn (1.7)

null(A) := {u ∈ Rn : Au = 0} ⊆ Rn (1.8)

left-null(A) := null(A>) ⊆ Rm (1.9)

It can be shown that they are all subspaces (Theorem 2.1, Friedberg et al. [2003]). Observe

that null(A) = row(A)⊥ and left-null(A) = range(A)⊥. In Section 1.3, we show that singular

value decomposition can be used to find an orthonormal basis of each of these subspaces.

The rank of A is defined as the dimension of the range of A, which is the number of

linearly independent columns of A:

rank(A) := dim(range(A)) (1.10)

An important use of the rank is testing the invertibility of a square matrix: A ∈ Rn×n is

invertible iff rank(A) = n (see p. 152 of Friedberg et al. [2003]). The nullity of A is the

dimension of the null space of A, nullity(A) := dim(null(A)).

The following theorems are fundamental results in linear algebra:

Theorem 1.1.4 (Rank-nullity theorem). Let A ∈ Rm×n. Then

rank(A) + nullity(A) = n

Proof. See p. 70 of Friedberg et al. [2003].

Theorem 1.1.5. Let A ∈ Rm×n. Then

dim(col(A)) = dim(row(A))
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Proof. See p. 158 of Friedberg et al. [2003].

Theorem 1.1.5 shows that rank(A) is also the number of linearly independent rows.

Furthermore, the rank-nullity theorem implies that if r = rank(A),

rank(A) = dim(col(A)) = dim(row(A)) = r

dim(null(A)) = n− r

dim(left-null(A)) = m− r

We define additional quantities associated with a matrix. The trace of a square matrix

A ∈ Rn×n is defined as the sum of its diagonal entries:

Tr(A) := [A]1,1 + · · ·+ [A]n,n (1.11)

The Frobenius norm ||A||F of a matrix A ∈ Rm×n is defined as:

||A||F :=

√√√√ m∑
i=1

n∑
j=1

|[A]i,j |2 =
√

Tr(A>A) =
√

Tr(AA>) (1.12)

where the trace expression can be easily verified. The relationship between the trace and

eigenvalues (1.23) implies that ||A||2F is the sum of the singular values of A. The spectral

norm or the operator norm ||A||2 of a matrix A ∈ Rm×n is defined as the maximizer of

||Ax||2 over the unit sphere,

||A||2 := max
u∈Rn: ||u||2=1

||Au||2 = max
u∈Rn: u6=0

||Au||2
||u||2

(1.13)

The variational characterization of eigenvalues (Theorem 1.2.7) implies that ||A||2 is the

largest singular value of A. Note that ||Au||2 ≤ ||A||2 ||u||2 for any u ∈ Rn: this matrix-

vector inequality is often useful.

An important property of ||·||F and ||·||2 is their orthogonal invariance:

Proposition 1.1.1. Let A ∈ Rm×n. Then

||A||F = ||QAR||F ||A||2 = ||QAR||2

where Q ∈ Rm×m and R ∈ Rn×n are any orthogonal matrices (see Section 1.1.4).
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Proof. Let A = UΣV > be an SVD of A. Then QAR = (QU)Σ(R>V )> is an SVD of QAR

since QU and R>V have orthonormal columns. Thus A and QAR have the same set of

singular values. Since ||·||F is the sum of singular values and ||·||2 is the maximum singular

value, the statement follows.

1.1.4 Orthogonal Matrices

A square matrix Q ∈ Rn×n is an orthogonal matrix if Q>Q = In×n. In other words, the

columns of Q are an orthonormal basis of Rn; it follows that QQ> = In×n since QQ> is

an identity operator over Rn (see Section 1.1.5). Two important properties of Q are the

following:

1. For any u ∈ Rn, Qu has the same length as u:

||Qu||2 =
√
u>Q>Qu =

√
u>u = ||u||2

2. For any nonzero u, v ∈ Rn, the angle θ1 ∈ [0, π] between Qu and Qv and θ2 ∈ [0, π]

between u and v are the same. To see this, note that

||Qu||2 ||Qv||2 cos θ1 = 〈Qu,Qv〉 = u>Q>Qv = 〈u, v〉 = ||u||2 ||v||2 cos(θ2)

It follows that cos θ1 = cos θ2 and thus θ1 = θ2 (since θ1, θ2 are taken in [0, π]).

Hence an orthogonal matrix Q ∈ Rn×n can be seen as a rotation of the coordinates in

Rn.1

1.1.5 Orthogonal Projection onto a Subspace

Theorem 1.1.6. Let S ⊆ Rn be a subspace spanned by an orthonormal basis u1 . . . um ∈ Rn.

Let U := [u1 . . . um] ∈ Rn×m. Pick any x ∈ Rn and define

y∗ := arg min
y∈S

||x− y||2 (1.14)

1Certain orthogonal matrices also represent reflection. For instance, the orthogonal matrix

Q =

0 1

1 0


is a reflection in R2 (along the diagonal line that forms an angle of π/4 with the x-axis).
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Then the unique solution is given by y∗ = UU>x.

Proof. Any element y ∈ S is given by Uv for some v ∈ Rn, thus y∗ = Uv∗ where

v∗ = arg min
v∈Rn

||x− Uv||2 = (U>U)−1U>x = U>x

is unique, hence y∗ is unique.

In Theorem 1.1.6, x− y∗ is orthogonal to the subspace S = span{u1 . . . um} since

〈x− y∗, ui〉 = x>ui − x>UU>ui = 0 ∀i ∈ [m] (1.15)

For this reason, the n×n matrix Π := UU> is called the orthogonal projection onto the

subspace S ⊆ Rn. A few remarks on Π:

1. Π is unique. If Π′ is another orthogonal projection onto S, then Πx = Π′x for all

x ∈ Rn (since this is uniquely given, Theorem 1.1.6). Hence Π = Π′.

2. Π is an identitiy operator for elements in S. This implies that the inherent dimension

of x ∈ S is m (not n) in the sense that the m-dimensional vector

x̃ := U>x

can be restored to x = Ux̃ ∈ Rn without any loss of accuracy. This idea is used in

subspace identification techniques (Section 2.7).

It is often of interest to compute the orthogonal projection Π ∈ Rn×n onto the range of

A ∈ Rn×m. If A already has orthonormal columns, the projection is given by Π = AA>.

Otherwise, a convenient construction is given by

Π = A(A>A)+A> (1.16)

To see this, let A = UΣV > be a rank-m SVD of A so that the columns of U ∈ Rn×m are

an orthonormal basis of range(A). Then

A(A>A)+A> = (UΣV >)(V Σ−2V >)(V ΣU>) = UU> (1.17)
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Gram-Schmidt(v1 . . . vm)

Input: linearly independent m ≤ n vectors v1 . . . vm ∈ Rn

1. Normalize v̄1 = v1/ ||v1||2.

2. For i = 2 . . .m,

(a) Remove the components of vi lying in the span of v̄1 . . . v̄i−1,

w̄i = vi − [v̄1 . . . v̄i−1][v̄1 . . . v̄i−1]>vi = vi −
i−1∑
j=1

(v̄>j vi)v̄j

(b) Normalize v̄i = w̄i/ ||w̄i||2.

Output: orthonormal v̄1 . . . v̄m ∈ Rn such that span{v̄1 . . . v̄i} = span{v1 . . . vi} for all

i = 1 . . .m

Figure 1.1: The Gram-Schmidt process.

1.1.6 Gram-Schmidt Process and QR Decomposition

An application of the orthogonal projection yields a very useful technique in linear algebra

called the Gram-Schmidt process (Figure 1.1).

Theorem 1.1.7. Let v1 . . . vm ∈ Rn be linearly independent vectors. The output v̄1 . . . v̄m ∈

Rn of Gram-Schmidt(v1 . . . vm) are orthonormal and satisfy

span{v̄1 . . . v̄i} = span{v1 . . . vi} ∀1 ≤ i ≤ m

Proof. The base case i = 1 can be trivially verified. Assume span{v̄1 . . . v̄i−1} equals

span{v1 . . . vi−1} and consider the vector v̄i computed in the algorithm. It is orthogo-

nal to the subspace span{v̄1 . . . v̄i−1} by (1.15) and has length 1 by the normalization step,

so v̄1 . . . v̄i are orthonormal. Furthermore,

vi = (v̄>1 vi)v̄1 + · · ·+ (v̄>i−1vi)v̄i−1 + ||w̄i||2 v̄i

is in span{v̄1 . . . v̄i}, thus span{v̄1 . . . v̄i} = span{v1 . . . vi}.
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QR(A)

Input: A ∈ Rn×m with linearly independent columns a1 . . . am ∈ Rn

1. Q := [ā1 . . . ām]← Gram-Schmidt(a1 . . . am)

2. Define an upper triangular matrix R ∈ Rm×m by

[R]i,j ← ā>i aj ∀i ∈ [1,m], j ∈ [i,m]

Output: orthonormal matrix Q ∈ Rn×m and an upper triangular matrix R ∈ Rm×m such

that A = QR.

Figure 1.2: QR decomposition.

The Gram-Schmidt process yields one of the most elementary matrix decomposition

techniques called QR decomposition. A simplified version (which assumes only matrices

with linearly independent columns) is given in Figure 1.1.

Theorem 1.1.8. Let A ∈ Rn×m be a matrix with linearly independent columns a1 . . . am ∈

Rn. The output (Q,R) of QR(A) are an orthonormal matrix Q ∈ Rn×m and an upper

triangular matrix R ∈ Rm×m such that A = QR.

Proof. The columns ā1 . . . ām of Q are orthonormal by Theorem 1.1.7 and R is upper tri-

angular by construction. The i-th column of QR is given by

(ā>1 ā1)ai + · · ·+ (ā>i āi)ai = [ā1 . . . āi][ā1 . . . āi]
>ai = ai

since ai ∈ span{ā1 . . . āi}.

The Gram-Schmidt process is also used in the non-negative matrix factorization algo-

rithm of Arora et al. [2012a].

1.2 Eigendecomposition

In this section, we develop a critical concept associated with a matrix called eigenvectors and

eigenvalues. This concept leads to decomposition of a certain class of matrices called eigen-
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decomposition. All statements (when not proven) can be found in standard introductory

textbooks on linear algebra such as Strang [2009].

1.2.1 Square Matrices

Let A ∈ Rn×n be a real square matrix. An eigenvector v of A is a nonzero vector that

preserves its direction in Rn under the linear transformation defined by A: that is, for some

scalar λ,

Av = λv (1.18)

The scalar λ is called the eigenvalue corresponding to v. A useful fact (used in the proof

of Theorem 1.2.3) is that eigenvectors corresponding to different eigenvalues are linearly

independent.

Lemma 1.2.1. Eigenvectors (v, v′) of A ∈ Rn×n corresponding to distinct eigenvalues

(λ, λ′) are linearly independent.

Proof. Suppose v′ = cv for some scalar c (which must be nonzero). Then the eigen condi-

tions imply that Av′ = A(cv) = cλv and also Av′ = λ′v′ = cλ′v. Hence λv = λ′v. Since

λ 6= λ′, we must have v = 0. This contradicts the definition of an eigenvector.

Theorem 1.2.2. Let A ∈ Rn×n. The following statements are equivalent:

• λ is an eigenvalue of A.

• λ is a scalar that yields det(A− λIn×n) = 0.

Proof. λ is an eigenvalue of A iff there is some nonzero vector v such that Av = λv, and

∃v 6= 0 : (A− λIn×n)v = 0 ⇐⇒ nullity(A− λIn×n) > 0

⇐⇒ rank(A− λIn×n) < n (by the rank-nullity theorem)

⇐⇒ A− λIn×n is not invertible

The last statement is equivalent to det(A− λIn×n) = 0.
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Since det(A − λIn×n) is a degree n polynomial in λ, it has n roots (counted with

multiplicity2) by the fundamental theorem of algebra and can be written as

det(A− λIn×n) = (λ− λ1)(λ− λ2) · · · (λ− λn) (1.19)

Let λ be a distinct root of (1.19) and a(λ) its multiplicity. Theorem 1.2.2 implies that λ is

a distinct eigenvalue of A with a space of corresponding eigenvectors

EA,λ := {v : Av = λv} (1.20)

(i.e., the null space of A − λIn×n and hence a subspace) which is called the eigenspace

of A associated with λ. The dimension of this space is the number of linearly independent

eigenvectors corresponding to λ. It can be shown that

1 ≤ dim(EA,λ) ≤ a(λ)

where the first inequality follows by the definition of λ (i.e., there is a corresponding eigen-

vector). We omit the proof of the second inequality.

Theorem 1.2.3. Let A ∈ Rn×n be a matrix with eigenvalues λ1 . . . λn. The following

statements are equivalent:

• There exist eigenvectors v1 . . . vn corresponding to λ1 . . . λn such that

A = V ΛV −1 (1.21)

where V = [v1 . . . vn] and Λ = diag(λ1 . . . λn). (1.21) is called an eigendecomposi-

tion of A.

• The eigenspace of A associated with each distinct eigenvalue λ has the maximum

dimension, that is, dim(EA,λ) = a(λ).

Proof. For any eigenvectors v1 . . . vn corresponding to λ1 . . . λn, we have

AV = V Λ (1.22)

2Recall that λ is a root of multiplicity k for a polynomial p(x) if p(x) = (x−λ)ks(x) for some polynomial

s(x) 6= 0.
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Thus it is sufficient to show that the existence of an invertible V is equivalent to the second

statement. This is achieved by observing that we can find n linearly independent eigen-

vectors iff we can find a(λ) linearly independent eigenvectors for each distinct eigenvalue λ

(since eigenvectors corresponding to different eigenvalues are already linearly independent

by Lemma 1.2.1).

Theorem 1.2.3 gives the condition on a square matrix to have an eigendecomposition (i.e.,

each eigenspace must have the maximum dimension). A simple corollary is the following:

Corollary 1.2.4. If A ∈ Rn×n has n distinct eigenvalues λ1 . . . λn, it has an eigendecom-

position.

Proof. Since 1 ≤ dim(EA,λi) ≤ a(λi) = 1 for each (distinct) eigenvalue λi, the statement

follows from Theorem 1.2.3.

Since we can write an eigendecomposition of A as

V −1AV = Λ

where Λ is a diagonal matrix, a matrix that has an eigendecomposition is called diago-

nalizable.3 Lastly, a frequently used fact about eigenvalues λ1 . . . λn of A ∈ Rn×n is the

following (proof omitted):

Tr(A) = λ1 + · · ·+ λn (1.23)

1.2.2 Symmetric Matrices

A square matrix A ∈ Rn×n always has eigenvalues but not necessarily an eigendecomposi-

tion. Fortunately, if A is additionally symmetric, A is guaranteed to have an eigendecom-

position of a convenient form.

Lemma 1.2.5. Let A ∈ Rn×n. If A is symmetric, then

3While not every square matrix A ∈ Rn×n is diagonalizable, it can be transformed into an upper triangular

form T = U>AU by an orthogonal matrix U ∈ Rn×n; see Theorem 3.3 of Stewart and Sun [1990]. This

implies a decomposition A = UTU> known the Schur decomposition. A can also always be transformed

into a block diagonal form called a Jordan canonical form; see Theorem 3.7 of Stewart and Sun [1990].
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1. All eigenvalues of A are real.

2. A is diagonalizable.

3. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. For the first and second statements, we refer to Strang [2009]. For the last statement,

let (v, v′) be eigenvectors of A corresponding to distinct eigenvalues (λ, λ′). Then

λv>v′ = v>A>v′ = v>Av′ = λ′v>v′

Thus v>v′ = 0 since λ 6= λ′.

Theorem 1.2.6. Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1 . . . λn ∈ R.

Then there exist orthonormal eigenvectors v1 . . . vn ∈ Rd of A corresponding to λ1 . . . λn. In

particular,

A = V ΛV > (1.24)

for orthogonal matrix V = [v1 . . . vn] ∈ Rn×n and Λ = diag(λ1 . . . λn) ∈ Rn×n.

Proof. Since A is diagonalizable (Lemma 1.2.5), the eigenspace of λi has dimension a(λi)

(Theorem 1.2.3). Since this is the null space of a real matrix A − λiIn×n, it has a(λi)

orthonormal basis vectors in Rn. The claim follows from the fact that the eigenspaces of

distinct eigenvalues are orthogonal (Lemma 1.2.5).

Another useful fact about the eigenvalues of a symmetric matrix is the following.

Proposition 1.2.1. If A ∈ Rn×n is symmetric, the rank of A is the number of nonzero

eigenvalues.

Proof. The dimension of EA,0 is the multiplicity of the eigenvalue 0 by Lemma 1.2.5 and

Theorem 1.2.3. The rank-nullity theorem gives rank(A) = n− nullity(A) = n− a(0).

Note that (1.24) can be equivalently written as a sum of weighted outer products

A =

n∑
i=1

λiviv
>
i =

∑
λi 6=0

λiviv
>
i (1.25)
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1.2.3 Variational Characterization

In Section 1.2.2, we see that any symmetric matrix has an eigendecomposition with real

eigenvalues and orthonormal eigenvectors. It is possible to frame this decomposition as a

constrained optimization problem (i.e., variational characterization).

Theorem 1.2.7. Let A ∈ Rn×n be a symmetric matrix with orthonormal eigenvectors

v1 . . . vn ∈ Rn corresponding to its eigenvalues λ1 ≥ . . . ≥ λn ∈ R. Let k ≤ n. Consider

maximizing v>Av over unit-length vectors v ∈ Rn under orthogonality constraints:

v∗i = arg max
v∈Rn:
||v||2=1

v>v∗j =0 ∀j<i

v>Av for i = 1 . . . k

Then an optimal solution is given by v∗i = vi.

Proof. The Lagrangian for the objective for v∗1 is:

L(v, λ̄) = v>Av − λ̄(v>v − 1)

Its stationary conditions v>v = 1 and Av = λ̄v imply that v∗1 is a unit-length eigenvector

of A with eigenvalue λ̄. Pre-multiplying the second condition by v> and using the first

condition, we have λ̄ = v>Av. Since this is the objective to maximize, we must have λ̄ = λ1.

Thus any unit-length eigenvector in EA,λ1 is an optimal solution for v∗1, in particular v1.

The case for v∗2 . . . v
∗
k can be proven similarly by induction.

Note that in Theorem 1.2.7,

λ1 = max
v: ||v||2=1

v>Av = max
v 6=0

(
v√
v>v

)>
A

(
v√
v>v

)
= max

v 6=0

v>Av

v>v

The quantity in the last expression is called the Rayleigh quotient,

R(A, v) :=
v>Av

v>v
(1.26)

Thus the optimization problem can be seen as maximizing R(A, v) over v 6= 0 (under

orthogonality constraints):

v∗i = arg max
v∈Rn:
v 6=0

v>v∗j =0 ∀j<i

v>Av

v>v
for i = 1 . . . k

Another useful characterization in matrix form is the following:
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Theorem 1.2.8. Let A ∈ Rn×n be a symmetric matrix with orthonormal eigenvectors

v1 . . . vn ∈ Rd corresponding to its eigenvalues λ1 ≥ . . . ≥ λn ∈ R. Let k ≤ n. Consider

maximizing the trace of V >AV ∈ Rk×k over orthonormal matrices V ∈ Rn×k:

V ∗ = arg max
V ∈Rn×k: V >V=Ik×k

Tr(V >AV )

Then an optimal solution is given by V ∗ = [v1 . . . vk].

Proof. Denote the columns of V by v̄1 . . . v̄k ∈ Rn. The Lagrangian for the objective is:

L({v̄1 . . . v̄k}, {λ̄i}ki=1, {γij}i 6=j) =
k∑
i=1

v̄>i Av̄i −
k∑
i=1

λ̄i(v̄
>
i v̄i − 1)−

∑
i 6=j

γij v̄
>
i v̄j

It can be verified from stationary conditions that v̄>i v̄i = 1, v̄>i v̄j = 0 (for i 6= j), and

Av̄i = λ̄iv̄i. Thus v̄1 . . . v̄k are orthonormal eigenvectors of A corresponding to eigenvalues

λ̄1 . . . λ̄k. Since the objective to maximize is

Tr(V >AV ) =
k∑
i=1

v̄>i Av̄i =
k∑
i=1

λ̄i

any set of orthonormal eigenvectors corresponding to the k largest eigenvalues λ1 ≥ . . . ≥ λk
are optimal, in particular V ∗ = [v1 . . . vk].

1.2.4 Semidefinite Matrices

A symmetric matrix A ∈ Rn×n always has an eigendecomposition with real eigenvalues.

When all the eigenvalues of A are furthermore non-negative, A is called positive semidef-

inite or PSD and sometimes written as A � 0. Equivalently, a symmetric matrix A ∈ Rn×n

is PSD if v>Av ≥ 0 for all v ∈ Rn; to see this, let A =
∑n

i=1 λiviv
>
i be an eigendecomposition

and note that

v>Av =

n∑
i=1

λi(v
>vi)

2 ≥ 0 ∀v ∈ Rn ⇐⇒ λi ≥ 0 ∀1 ≤ i ≤ n

A PSD matrix whose eigenvalues are strictly positive is called positive definite and written

as A � 0. Similarly as above, A � 0 iff v>Av > 0 for all v 6= 0. Matrices that are

negative semidefinite and negative definite are symmetrically defined (for non-positive

and negative eigenvalues).

These matrices are important because they arise naturally in many settings.
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Example 1.2.1 (Covariance matrix). The covariance matrix of a random variable X ∈ Rn

is defined as

CX := E
[
(X −E[X])(X −E[X])>

]
which is clearly symmetric. For any v ∈ Rn, let Z := v>(X−E[X]) and note that v>CXv =

E[Z2] ≥ 0, thus CX � 0.

Example 1.2.2 (Hessian). Let f : Rn → R be a differentiable function. The Hessian of f

at x is defined as ∇2f(x) ∈ Rn×n where

[∇2f(x)]i,j :=
∂2f(x)

∂xi∂xj
∀i, j ∈ [n]

which is clearly symmetric. If x is stationary, ∇f(x) = 0, then the spectral properties of

∇2f(x) determines the category of x.

• If ∇2f(x) � 0, then x is a local minimum. Consider any direction u ∈ Rn. By

Taylor’s theorem, for a sufficiently small η > 0

f(x+ ηu) ≈ f(x) +
η2

2
u>∇2f(x)u > f(x)

• Likewise, if ∇2f(x) ≺ 0, then x is a local maximum.

• If ∇2f(x) has both positive and negative eigenvalues, then x is a saddle point. If

v+ ∈ Rn is an eigenvector corresponding to a positive eigenvalue,

f(x+ ηv+) ≈ f(x) +
η2

2
v>+∇2f(x)v+ > f(x)

If v− ∈ Rn is an eigenvector corresponding to a negative eigenvalue,

f(x+ ηv−) ≈ f(x) +
η2

2
v>−∇2f(x)v− < f(x)

Finally, if ∇2f(x) � 0 for all x ∈ Rn, then f is convex. Given any x, y ∈ Rn, for some z

between x and y,

f(y) = f(x) +∇f(x)>(y − x) +
1

2
(y − x)>∇2f(z)(y − x)

≥ f(x) +∇f(x)>(y − x)
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Example 1.2.3 (Graph Laplacian). Consider an undirected weighted graph with n vertices

[n] and a (symmetric) adjacency matrix W ∈ Rn×n. The (i, j)-th entry of W is a non-

negative weight wij ≥ 0 for edge (i, j) where wij = 0 iff there is no edge (i, j). The degree

of vertex i ∈ [n] is defined as di :=
∑n

j=1wij and assumed to be positive.

The (unnormalized) graph Laplacian is a matrix whose spectral properties reveal the

connectivity of the graph:

L := D −W (1.27)

where D := diag(d1, . . . , dn). Note that L does not depend on self-edges wii by construction.

This matrix has the following properties (proofs can be found in Von Luxburg [2007]):

• L � 0 (and symmetric), so all its eigenvalues are non-negative.

• Moreover, the multiplicity of eigenvalue 0 is the number of connected components in

the graph (so it is always at least 1).

• Suppose there are m ≤ n connected components A1 . . . Am (a partition of [n]). Repre-

sent each component c ∈ [m] by an indicator vector 1c ∈ {0, 1}n where

1
c
i = [[ vertex i belongs to component c ]] ∀i ∈ [n]

Then {11 . . .1m} is a basis of the zero eigenspace EL,0.

1.2.5 Numerical Computation

Numerical computation of eigenvalues and eigenvectors is a deep subject beyond the scope

of this thesis. Thorough treatments can be found in standard references such as Golub and

Van Loan [2012]. Here, we supply basic results to give insight.

Consider computing eigenvectors (and their eigenvalues) of a diagonalizable matrix A ∈

Rn×n. A direct approach is to calculate the n roots of the polynomial det(A − λIn×n) in

(1.19) and for each distinct root λ find an orthonormal basis of its eigenspace EA,λ = {v :

(A− λIn×n)v = 0} in (1.20). Unfortunately, finding roots of a high-degree polynomial is a

non-trivial problem of its own. But the following results provide more practical approaches

to this problem.
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1.2.5.1 Power Iteration

Theorem 1.2.9. Let A ∈ Rn×n be a nonzero symmetric matrix with eigenvalues |λ1| >

|λ2| ≥ · · · ≥ |λn| and corresponding orthonormal eigenvectors v1 . . . vn. Let v ∈ Rn be a

vector chosen at random. Then Akv converges to some multiple of v1 as k increases.

Proof. Since v1 . . . vn form an orthonormal basis of Rn and v is randomly chosen from Rn,

v =
∑n

i=1 civi for some nonzero c1 . . . cn ∈ R. Therefore,

Akv = λk1

(
c1v1 +

n∑
i=2

ci

(
λi
λ1

)k
vi

)
Since |λi/λ1| < 1 for i = 2 . . . n, the second term vanishes as k increases.

A few remarks on Theorem 1.2.9:

• The proof suggests that the convergence rate depends on λ2/λ1 ∈ [0, 1). If this is

zero, k = 1 yields an exact estimate Av = λ1c1v1. If this is nearly one, it may take a

large value of k before Akv converges.

• The theorem assumes |λ1| > |λ2| for simplicity (this is called a spectral gap condition),

but there are more sophisticated analyses that do not depend on this assumption (e.g.,

Halko et al. [2011]).

• Once we have an estimate v̂1 = Akv of the dominant eigenvector v1, we can calculate

an estimate λ̂1 of the corresponding eigenvalue by solving

λ̂1 = arg min
λ∈R

||Av̂1 − λv̂1||2 (1.28)

whose closed-form solution is given by the Rayleigh quotient:

λ̂1 =
v̂>1 Av̂1

v̂>1 v̂1
(1.29)

• Once we have an estimate (v̂1, λ̂1) of (v1, λ1), we can perform a procedure called

deflation

A′ := A− λ̂1v̂1v̂
>
1 ≈ A− λ1v1v

>
1 =

n∑
i=2

λiviv
>
i (1.30)

If v̂1 = v1, the dominant eigenvector of A′ is exactly v2 which can be estimated in a

similar manner.
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Input: symmetric A ∈ Rn×n, number of desired eigen components m ≤ n

Simplifying Assumption: the m dominant eigenvalues of A are nonzero and distinct,

|λ1| > · · · > |λm| > |λm+1| > 0 (λm+1 = 0 if m = n), with corresponding orthonormal

eigenvectors v1 . . . vm ∈ Rn

1. For i = 1 . . .m,

(a) Initialize v̂i ∈ Rn randomly from a unit sphere.

(b) Loop until convergence:

i. v̂i ← Av̂i

ii. v̂i ← v̂i/ ||v̂i||

(c) Compute the corresponding eigenvalue λ̂i ← v̂>i Av̂i.

(d) Deflate A← A− λ̂iv̂iv̂>i .

Output: estimate (v̂i, λ̂i) of (vi, λi) for i = 1 . . .m

Figure 1.3: A basic version of the power iteration method.

Theorem 1.2.9 suggests a scheme for finding eigenvectors of A, one by one, in the order

of decreasing eigenvalues. This scheme is called the power iteration method; a basic

version of the power method is given in Figure 1.3. Note that the eigenvector estimate is

normalized in each iteration (Step 1(b)ii); this is a typical practice for numerical stability.

1.2.5.2 Orthogonal Iteration

Since the error introduced in deflation (1.30) propagates to the next iteration, the power

method may be unstable for non-dominant eigen components. A natural generalization that

remedies this problem is to find eigenvectors of A corresponding to the largest m eigenvalues

simultaneously. That is, we start with m linearly independent vectors as columns of Ṽ =

[v̂1 . . . v̂m] and compute

AkṼ = [Akv̂1 . . . A
kv̂m]
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Input: symmetric A ∈ Rn×n, number of desired eigen components m ≤ n

Simplifying Assumption: the m dominant eigenvalues of A are nonzero and distinct,

|λ1| > · · · > |λm| > |λm+1| > 0 (λm+1 = 0 if m = n), with corresponding orthonormal

eigenvectors v1 . . . vm ∈ Rn

1. Initialize V̂ ∈ Rn×m such that V̂ >V̂ = Im×m randomly.

2. Loop until convergence:

(a) Ṽ ← AV̂

(b) Update V̂ to be an orthonormal basis of range(Ṽ ) (e.g., by computing the QR

decomposition: [V̂ , R]← QR(Ṽ )).

3. Compute the corresponding eigenvalues Λ̂← V̂ >AV̂ .

4. Reorder the columns of V̂ and Λ̂ in descending absolute magnitude of eigenvalues.

Output: estimate (V̂ , Λ̂) of (V,Λ) where V = [v1 . . . vm] and Λ = diag(λ1 . . . λm).

Figure 1.4: A basic version of the subspace iteration method.

Note that each column of AkṼ converges to the dominant eigen component (the case m = 1

degenerates to the power method). As long as the columns remain linearly independent

(which we can maintain by orthogonalizing the columns in every multiplication by A), their

span converges to the subspace spanned by the eigenvectors of A corresponding to the largest

m eigenvalues under certain conditions (Chapter 7, Golub and Van Loan [2012]). Thus the

desired eigenvectors can be recovered by finding an orthonormal basis of range(AkṼ ). The

resulting algorithm is known as the orthogonal iteration method and a basic version of

the algorithm is given in Figure 1.4. As in the power iteration method, a typical practice

is to compute an orthonormal basis in each iteration rather than in the end to improve

numerical stability; in particular, to prevent the estimate vectors from becoming linearly

dependent (Step 2b).
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1.2.5.3 Lanczos Method

We mention a final algorithm which is particularly effective when the goal is to compute only

a small number of dominant eigenvalues of a large, sparse symmetric matrix. The algorithm

is known as the Lanczos method; details of this method can be found in Chapter 9 of

Golub and Van Loan [2012]. We give a sketch of the algorithm to illustrate its mechanics.

This is the algorithm we use in in implementing our works. More specifically, we use

the SVDLIBC package provided by Rohde [2007] which employs the single-vector Lanczos

method.

Let A ∈ Rn×n be a symmetric matrix. The Lanczos method seeks an orthogonal matrix

Qn ∈ Rn×n such that

T = Q>nAQn =



α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0 β2
. . .

...
. . . βn−1

0 · · · βn−1 αn


(1.31)

is a tridiagonal matrix (i.e., Ti,j = 0 except when i ∈ {j−1, j, j+ 1}). We know that such

matrices exist since A is diagonalizable; for instance, Qn can be orthonormal eigenvectors

of A. Note that T is symmetric (since A is). From an eigendecompsition of T = Ṽ Λ̃Ṽ >,

we can recover an eigendecomposition of the original matrix A = V Λ̃V > where V = QnṼ

since

A = QnTQ
>
n = (QnṼ )Λ̃(QnṼ )>

is an eigendecomposition. The Lanczos method is an iterative scheme to efficiently calcu-

late Qn and, in the process, simultaneously compute the tridiagonal entries α1 . . . αn and

β1 . . . βn−1.

Lemma 1.2.10. Let A ∈ Rn×n be symmetric and Qn = [q1 . . . qn] be an orthogonal matrix

such that T = Q>nAQn has the tridiagonal form in (1.31). Define q0 = qn+1 = 0, β0 = 1,

and

ri := Aqi − βi−1qi−1 − αiqi 1 ≤ i ≤ n
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Then

αi = q>i Aqi 1 ≤ i ≤ n (1.32)

βi = ||ri||2 1 ≤ i ≤ n− 1 (1.33)

qi+1 = ri/βi 1 ≤ i ≤ n− 1 (1.34)

Proof. Since AQn = QnT , by the tridiagonal structure of T ,

Aqi = βi−1qi−1 + αiqi + βiqi+1 1 ≤ i ≤ n

Multiplying on the left by qi and using the orthonormality of q1 . . . qn, we verify αi = q>i Aqi.

Rearranging the expression gives

βiqi+1 = Aqi − βi−1qi−1 − αiqi = ri

Since qi+1 is a unit vector for 1 ≤ i ≤ n− 1, we have βi = ||ri|| and qi+1 = ri/βi.

Lemma 1.2.10 suggests that we can seed a random unit vector q1 and iteratively compute

(αi, βi−1, qi) for all i ≤ n. Furthermore, it can be shown that if we terminate this iteration

early at i = m ≤ n, the eigenvalues and eigenvectors of the resulting m × m tridiagonal

matrix are a good approximation of the m dominant eigenvalues and eigenvectors of the

original matrix A. It can also be shown that the Lanczos method converges faster than the

power iteration method [Golub and Van Loan, 2012].

A basic version of the Lanczos method shown in Figure 1.5. The main computation in

each iteration is a matrix-vector product Aq̂i which can be made efficient if A is sparse.

1.3 Singular Value Decomposition (SVD)

Singular value decomposition (SVD) is an application of eigendecomposition to factorize

any matrix A ∈ Rm×n.
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Input: symmetric A ∈ Rn×n with dominant eigenvalues |λ1| ≥ · · · ≥ |λm| > 0 and cor-

responding orthonormal eigenvectors v1 . . . vm ∈ Rn, number of desired eigen components

m ≤ n

1. Initialize q̂1 ∈ Rn randomly from a unit sphere and let q̂0 = 0 and β̂0 = 1.

2. For i = 1 . . .m,

(a) Compute α̂i ← q̂>i Aq̂i. If i < m, compute:

r̂i ← Aq̂i − β̂i−1q̂i−1 − α̂iq̂i β̂i ← ||r̂i||2 q̂i+1 ← r̂i/β̂i

3. Compute the eigenvalues |λ̂1| ≥ . . . ≥ |λ̂m| and the corresponding orthonormal eigen-

vectors ŵ1 . . . ŵm ∈ Rm of the m×m tridiagonal matrix:

T̂ =



α̂1 β̂1 0 · · · 0

β̂1 α̂2 β̂2
. . .

...

0 β̂2
. . .

...
. . . β̂m−1

0 · · · β̂m−1 α̂m


(e.g., using the orthogonal iteration method).

4. Let v̂i ← Q̂mŵi where Q̂m := [q̂1 . . . q̂m] ∈ Rn×m.

Output: estimate (v̂i, λ̂i) of (vi, λi) for i = 1 . . .m

Figure 1.5: A basic version of the Lanczos method.

1.3.1 Derivation from Eigendecomposition

SVD can be derived from an observation that AA> ∈ Rm×m and A>A ∈ Rn×n are sym-

metric and PSD, and have the same number of nonzero (i.e., positive) eigenvalues since

rank(A>A) = rank(AA>) = rank(A).

Theorem 1.3.1. Let A ∈ Rm×n. Let λ1 ≥ . . . ≥ λm ≥ 0 denote the m eigenvalues of AA>
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and λ′1 ≥ . . . ≥ λ′n ≥ 0 the n eigenvalues of A>A. Then

λi = λ′i 1 ≤ i ≤ min{m,n} (1.35)

Moreover, there exist orthonormal eigenvectors u1 . . . um ∈ Rm of AA> corresponding to

λ1 . . . λm and orthonormal eigenvectors v1 . . . vn ∈ Rn of A>A corresponding to λ′1 . . . λ
′
n

such that

A>ui =
√
λivi 1 ≤ i ≤ min{m,n} (1.36)

Avi =
√
λiui 1 ≤ i ≤ min{m,n} (1.37)

Proof. Let u1 . . . um ∈ Rm be orthonormal eigenvectors of AA> corresponding to eigenvalues

λ1 ≥ . . . ≥ λm ≥ 0. Pre-multiplying AA>ui = λiui by A> and u>i , we obtain

A>A(A>ui) = λi(A
>ui) (1.38)

λi =
∣∣∣∣∣∣A>ui∣∣∣∣∣∣2

2
(1.39)

The first equality shows that A>ui is an eigenvector of A>A corresponding to an eigenvalue

λi. Since this holds for all i and both AA> and A>A have the same number of nonzero

eigenvalues, we have (1.35).

Now, construct v1 . . . vm as follows. Let eigenvectors vi of A>A corresponding to nonzero

eigenvalues λi > 0 be:

vi =
A>ui√
λi

(1.40)

These vectors are unit-length eigenvectors of A>A by (1.38) and (1.39). Furthermore, they

are orthogonal: if i 6= j,

v>i vj =
u>i AA

>uj√
λiλj

=

√
λj
λi
u>i uj = 0

Let eigenvectors vi of A>A corresponding to zero eigenvalues λi = 0 be any orthonormal

basis of EA>A,0. Since this subspace is orthogonal to eigenvectors of A>A corresponding to

nonzero eigenvalues, we conclude that all v1 . . . vm are orthonormal.
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It remains to verify (1.36) and (1.37). For λi > 0, they follow immediately from (1.40).

For λi = 0, A>ui and Avi must be zero vectors since
∣∣∣∣A>ui∣∣∣∣22 = λi by (1.39) and also

||Avi||22 = v>i A
>Avi = λi; thus (1.36) and (1.37) hold trivially.

The theorem validates the following definition.

Definition 1.3.1. Let A ∈ Rm×n. Let u1 . . . um ∈ Rm be orthonormal eigenvectors of

AA> corresponding to eigenvalues λ1 ≥ · · · ≥ λm ≥ 0, let v1 . . . vn ∈ Rn be orthonormal

eigenvectors of A>A corresponding to eigenvalues λ′1 ≥ · · · ≥ λ′n ≥ 0, such that

λi = λ′i 1 ≤ i ≤ min{m,n}

A>ui =
√
λivi 1 ≤ i ≤ min{m,n}

Avi =
√
λiui 1 ≤ i ≤ min{m,n}

The singular values σ1 . . . σmax{m,n} of A are defined as:

σi :=


√
λi 1 ≤ i ≤ min{m,n}

0 min{m,n} < i ≤ max{m,n}
(1.41)

The vector ui is called a left singular vector of A corresponding to σi. The vector vi is

called a right singular vector of A corresponding to σi. Define

• U ∈ Rm×m is an orthogonal matrix U := [u1 . . . um].

• Σ ∈ Rm×n is a rectangular diagonal matrix with Σi,i = σi for 1 ≤ i ≤ min{m,n}.

• V ∈ Rn×n is an orthogonal matrix V := [v1 . . . vn].

and note that AV = UΣ. This gives a singular value decomposition (SVD) of A:

A = UΣV > =

min{m,n}∑
i=1

σiuiv
>
i (1.42)

If A is already symmetric, there is a close relation between an eigendecomposition of A

and an SVD of A.
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Proposition 1.3.1. If A ∈ Rn×n is symmetric and A = V diag(λ1 . . . λn)V > is an or-

thonormal eigendecomposition of A with λ1 ≥ · · · ≥ λn, then A = V diag(|λ1| . . . |λn|)V > is

an SVD of A.

Proof. Since V diag(λ2
1 . . . λ

2
n)V > is an eigendecomposition of AA> and A>A, the i-th sin-

gular value of A is σi =
√
λ2
i = |λi| and the left and right singular vectors corresponding to

σi are both the i-th column of V .

Corollary 1.3.2. If A ∈ Rn×n is symmetric, an eigendecomposition of A and an SVD of

A are the same iff A � 0.

As emphasized in Chapter 6.7 of Strang [2009], given a matrix A ∈ Rm×n with rank r,

an SVD yields an orthonormal basis for each of the four subspaces assocated with A:

col(A) = span{u1 . . . ur}

row(A) = span{v1 . . . vr}

null(A) = span{vr+1 . . . vn}

left-null(A) = span{ur+1 . . . um}

A typical practice, however, is to only find singular vectors corresponding to a few dominant

singular values (in particular, ignore zero singular values).

Definition 1.3.2 (Low-rank SVD). Let A ∈ Rm×n with rank r. Let u1 . . . ur ∈ Rm and

v1 . . . vr ∈ Rn be left and right singular vectors of A corresponding to the (only) positive

singular values σ1 ≥ · · · ≥ σr > 0. Let k ≤ r. A rank-k SVD of A is

Â = UkΣkV
>
k =

k∑
i=1

σiuiv
>
i (1.43)

where Uk := [u1 . . . uk] ∈ Rm×k, Σk := diag(σ1 . . . σk) ∈ Rk×k, and Vk := [v1 . . . vk] ∈ Rn×k.

Note that Â = A if k = r.

1.3.2 Variational Characterization

Theorem 1.3.3. Let A ∈ Rm×n with left singular vectors u1 . . . up ∈ Rm and right singular

vectors v1 . . . vp ∈ Rn corresponding to singular values σ1 ≥ . . . ≥ σp ≥ 0 where p :=
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min{m,n}. Let k ≤ p. Consider maximizing u>Av over unit-length vector pairs (u, v) ∈

Rm × Rn under orthogonality constraints:

(u∗i , v
∗
i ) = arg max

(u,v)∈Rm×Rn:
||u||2=||v||2=1

u>u∗j=v>v∗j =0 ∀j<i

u>Av for i = 1 . . . k

Then an optimal solution is given by (u∗i , v
∗
i ) = (ui, vi).

Proof. The proof is similar to the proof of Theorem 1.2.7 and is omitted.

Theorem 1.3.4. Let A ∈ Rm×n with left singular vectors u1 . . . up ∈ Rm and right sin-

gular vectors v1 . . . vp ∈ Rn corresponding to singular values σ1 ≥ . . . ≥ σp ≥ 0 where

p := min{m,n}. Let k ≤ p. Consider maximizing the trace of V >A>AV ∈ Rk×k over

orthonormal matrices V ∈ Rn×k:

V ∗ = arg max
V ∈Rn×k: V >V=Ik×k

Tr(V >A>AV )

= arg max
V ∈Rn×k: V >V=Ik×k

∣∣∣∣AV ∣∣∣∣2
F

where the second expression is by definition. Then an optimal solution is given by V ∗ =

[v1 . . . vk].

Proof. Since this is equivalent to the constrained optimization in Theorem 1.2.8 where the

given symmetric matrix is A>A, the result follows from the definition of right singular

vectors.

1.3.3 Numerical Computation

Numerical computation of SVD is again an involved subject beyond the scope of this thesis.

See Cline and Dhillon [2006] for references to a wide class of algorithms. Here, we give a

quick remark on the subject to illustrate main ideas.

Let A ∈ Rm×n with m ≤ n (if not, consider A>) and consider computing a rank-k

SVD UkΣkV
>
k of A. Since the columns of Uk ∈ Rm×k are eigenvectors corresponding to

the dominant k eigenvalues of A>A ∈ Rm×m (which are squared singular values of A),

we can compute an eigendecomposition of A>A to obtain Uk and Σk, and finally recover

Vk = Σ−1
k U>k A.
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The core of many SVD algorithms is computing an eigendecomposition of A>A efficiently

without explicitly computing the matrix product. This can be done in various ways. For

instance, we can modify the basic Lanczos algorithm in Figure 1.5 as follows: replace the

matrix-vector product Aq̂i in Step 2a to ẑi := Aq̂i followed by A>ẑi. As another example,

Matlab’s sparse SVD (svds) computes an eigendecomposition of

B :=

 0 A

A> 0

 ∈ R(n+m)×(n+m)

and extracts the singular vectors and values of A from the eigendecomposition of B.

There is also a randomized algorithm for computing an SVD [Halko et al., 2011]. While

we do not use it in this thesis since other SVD algorithms are sufficiently scalable and

efficient for our purposes, the randomized algorithm can potentially be used for computing

an SVD of an extremely large matrix.

1.4 Perturbation Theory

Matrix perturbation theory is concerned with how properties of a matrix change when the

matrix is perturbed by some noise. For instance, how “different” are the singular vectors

of A from the singular vectors of Â = A+ E where E is some noise matrix?

In the following, we let σi(M) ≥ 0 denote the i-th largest singular value of M . We write

∠ {u, v} to denote the angle between nonzero vectors u, v taken in [0, π].

1.4.1 Perturbation Bounds on Singular Values

Basic bounds on the singular values of a perturbed matrix are given below. They can also

be used as bounds on eigenvalues for symmetric matrices.

Theorem 1.4.1 (Weyl [1912]). Let A,E ∈ Rm×n and Â = A+ E. Then∣∣∣σi(Â)− σi(A)
∣∣∣ ≤ ||E||2 ∀i = 1 . . .min{m,n}

Theorem 1.4.2 (Mirsky [1960]). Let A,E ∈ Rm×n and Â = A+ E. Then

min{m,n}∑
i=1

(
σi(Â)− σi(A)

)2
≤ ||E||2F
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1.4.2 Canonical Angles Between Subspaces

To measure how “different” the singular vectors of A are from the singular vectors of

Â = A+E, we use the concept of an angle between the associated subspaces. This concept

can be understood from the one-dimensional case. Suppose X ,Y ⊂ Rn are subspaces of

Rn with dim(X ) = dim(Y) = 1. An acute angle ∠ {X ,Y} between these subspaces can be

calculated as:

∠ {X ,Y} = arccos max
x∈X , y∈Y:
||x||2=||y||2=1

x>y

This is because x>y = cos∠ {x, y} for unit vectors x, y. Maximization ensures that the

angle is acute. The definition can be extended as follows:

Definition 1.4.1. Let X ,Y ⊂ Rn be subspaces of Rn with dim(X ) = d and dim(Y) = d′.

Let m := min{d, d′}. The canonical angles between X and Y are defined as

∠i {X ,Y} := arccos max
x∈X , y∈Y:
||x||2=||y||2=1

x>xj=y>yj=0 ∀j<i

x>y ∀i = 1 . . .m

The canonical angle matrix between X and Y is defined as

∠ {X ,Y} := diag(∠1 {X ,Y} . . .∠m {X ,Y})

Canonical angles can be found with SVD:

Theorem 1.4.3. Let X ∈ Rn×d and Y ∈ Rn×d′ be orthonormal bases for X := range(X)

and Y := range(Y ). Let X>Y = UΣV > be a rank-(min{d, d′}) SVD of X>Y . Then

∠ {X ,Y} = arccos Σ

Proof. For all 1 ≤ i ≤ min{d, d′},

cos∠i {X ,Y} = max
x∈range(X)
y∈range(Y ):
||x||2=||y||2=1

x>xj=y>yj=0 ∀j<i

x>y = max
u∈Rd, v∈Rd′ :
||u||2=||v||2=1

u>uj=v>vj=0 ∀j<i

uX>Y v = σi

where we solve for u, v in x = Xu and y = Y v under the same constraints (using the

orthonormality of X and Y ) to obtain the second equality. The final equality follows from

a variational characterization of SVD.
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Sine of the canonical angles The sine of the canoincal angles between subspaces is

a natural measure of their difference partly because of its connection to the respective

orthogonal projections (see Section 1.1.5).

Theorem 1.4.4 (Chapter 2, Stewart and Sun [1990]). Let X ,Y ⊂ Rn be subspaces of Rn.

Let ΠX ,ΠY ∈ Rn×n be the (unique) orthogonal projections onto X ,Y. Then

||sin∠ {X ,Y}||F =
1√
2
||ΠX −ΠY ||F

A result that connects the sine of canonical angles to singular values is the following:

Theorem 1.4.5 (Corollary 5.4, p. 43, Stewart and Sun [1990]). Let X ,Y ⊂ Rn be subspaces

of Rn with the same dimension dim(X ) = dim(Y) = d. Let X,Y ∈ Rn×d be orthonormal

bases of X ,Y. Let X⊥, Y⊥ ∈ Rn×(n−d) be orthonormal bases of X⊥,Y⊥. Then the nonzero

singular values of Y >⊥ X or X>⊥Y are the sines of the nonzero canonical angles between X

and Y. In particular,

||sin∠ {X ,Y}|| =
∣∣∣∣∣∣Y >⊥ X∣∣∣∣∣∣ =

∣∣∣∣∣∣X>⊥Y ∣∣∣∣∣∣ (1.44)

where the norm can be ||·||2 or ||·||F .

1.4.3 Perturbation Bounds on Singular Vectors

Given the concept of canonical angles, We are now ready to state important bounds on the

top singular vectors of a perturbed matrix attributed to Wedin [1972].

Theorem 1.4.6 (Wedin, spectral norm, p. 262, Theorem 4.4, Stewart and Sun [1990]). Let

A,E ∈ Rm×n and Â = A + E. Assume m ≥ n. Let A = UΣV > and Â = Û Σ̂V̂ > denote

SVDs of A and Â. Choose the number of the top singular components k ∈ [n] and write

A = [U1U2U3]


Σ1 0

0 Σ2

0 0

 [V1V2]> Â =
[
Û1Û2Û3

]
Σ̂1 0

0 Σ̂2

0 0

[V̂1V̂2

]>
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where the matrices (U1,Σ1, V1) with Σ1 ∈ Rk×k, (U2,Σ2, V2) with Σ2 ∈ R(n−k)×(n−k), and a

leftover U3 ∈ Rm×(m−n) represent a k-partition of UΣV (analogously for Â). Let

Φ := ∠
{

range(U1), range(Û1)
}

Θ := ∠
{

range(V1), range(V̂1)
}

If there exist α, δ > 0 such that σk(Â) ≥ α+ δ and σk+1(A) ≤ α, then

||sin Φ||2 ≤
||E||2
δ

||sin Θ||2 ≤
||E||2
δ

We point out some subtle aspects of Theorem 1.4.6. First, we can choose any matrices

to bound ||sin Φ||2 as long as they have U1 and Û1 as their top k left singular vectors

(analogously for Θ). Second, we can flip the ordering of the singular value constraints (i.e.,

we can choose which matrix to treat as the original). For example, let Ã ∈ Rm×n be any

matrix whose top k left singular vectors are Û1 (e.g., Ã = Û1Σ̂1V̂
>

1 ). The theorem implies

that if there exist α, δ > 0 such that σk(A) ≥ α+ δ and σk+1(Ã) ≤ α, then

||sin Φ||2 ≤

∣∣∣∣∣∣Ã−A∣∣∣∣∣∣
2

δ

There is also a Frobenius norm version of Wedin, which is provided here for completeness:

Theorem 1.4.7 (Wedin, Frobenius norm, p. 260, Theorem 4.1, Stewart and Sun [1990]).

Assume the same notations in Theorem 1.4.6. If there exists δ > 0 such that σk(Â) ≥ δ

and mini=1...k, j=k+1...n

∣∣∣σi(Â)− σj(A)
∣∣∣ ≥ δ, then

||sin Φ||2F + ||sin Θ||2F ≤
2 ||E||2F
δ2

Applications of Wedin to low-rank matrices Simpler versions of Wedin’s theorem

can be derived by assuming that A has rank k (i.e., our choice of the number of the top

singular components exactly matches the number of nonzero singular values of A). This

simplifies the condition in Theorem 1.4.6 because σk+1(A) = 0.

Theorem 1.4.8 (Wedin, Corollary 22, Hsu et al. [2012]). Assume the same notations in

Theorem 1.4.6. Assume rank(A) = k and rank(Â) ≥ k. If
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
≤ εσk(A) for some
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ε < 1, then

||sin Φ||2 ≤
ε

1− ε
||sin Θ||2 ≤

ε

1− ε

Proof. For any value of α > 0, define δ := σk(Â) − α. Since σk(Â) is positive, we can

find a sufficiently small α such that δ is positive, thus the conditions σk(Â) ≥ α + δ and

σk+1(A) = 0 ≤ α in Theorem 1.4.6 are satisfied. It follows that

||sin Φ||2 ≤

∣∣∣∣∣∣Â−A∣∣∣∣∣∣
2

δ
=

∣∣∣∣∣∣Â−A∣∣∣∣∣∣
2

σk(Â)− α

Since this is true for any α > 0, we can take limit α→ 0 on both sides to obtain

||sin Φ||2 ≤

∣∣∣∣∣∣Â−A∣∣∣∣∣∣
2

σk(Â)
≤ εσk(A)

σk(Â)
≤ εσk(A)

(1− ε)σk(A)
=

ε

1− ε

where the last inequality follows from Weyl’s inequality: σk(Â) ≥ (1− ε)σk(A). The bound

on the right singular vectors can be shown similarly.

It is also possible to obtain a different bound by using an alternative argument.

Theorem 1.4.9 (Wedin). Assume the same notations in Theorem 1.4.6. Assume rank(A) =

k and rank(Â) ≥ k. If
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
≤ εσk(A) for some ε < 1, then

||sin Φ||2 ≤ 2ε ||sin Θ||2 ≤ 2ε

Proof. Define Ã := Û1Σ̂1V̂
>

1 . Note that
∣∣∣∣∣∣Â− Ã∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
since Ã is the optimal

rank-k approximation of Â in ||·||2 (Theorem 2.2.1). Then by the triangle inequality,∣∣∣∣∣∣Ã−A∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣Â− Ã∣∣∣∣∣∣

2
+
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
≤ 2εσk(A)

We now apply Theorem 1.4.6 with Ã as the original matrix and A as a perturbed matrix

(see the remark below Theorem 1.4.6). Since σk(A) > 0 and σk+1(Ã) = 0, we can use the

same limit argument in the proof of Theorem 1.4.8 to have

||sin Φ||2 ≤

∣∣∣∣∣∣A− Ã∣∣∣∣∣∣
2

σk(A)
≤ 2εσk(A)

σk(A)
= 2ε

The bound on the right singular vectors can be shown similarly.
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All together, we can state the following convenient corollary.

Corollary 1.4.10 (Wedin). Let A ∈ Rm×n with rank k. Let E ∈ Rm×n be a noise matrix

and assume that Â := A + E has rank at least k. Let A = UΣV > and Â = Û Σ̂V̂ > denote

rank-k SVDs of A and Â. If ||E||2 ≤ εσk(A) for some ε < 1, then for any orthonormal

bases U⊥, Û⊥ of range(U)⊥, range(Û)⊥ and V⊥, V̂⊥ of range(V )⊥, range(V̂ )⊥, we have∣∣∣∣∣∣Û>⊥U ∣∣∣∣∣∣
2

=
∣∣∣∣∣∣U>⊥ Û ∣∣∣∣∣∣

2
≤ min

{
ε

1− ε
, 2ε

}
∣∣∣∣∣∣V̂ >⊥ V ∣∣∣∣∣∣

2
=
∣∣∣∣∣∣V >⊥ V̂ ∣∣∣∣∣∣

2
≤ min

{
ε

1− ε
, 2ε

}
Note that if ε < 1/2 the bound ε/(1− ε) < 2ε < 1 is tighter.

Proof. The statement follows from Theorem 1.4.8, 1.4.9, and 1.4.5.

It is also possible to derive a version of Wedin that does not involve orthogonal comple-

ments. The proof illustrates a useful technique: given any orthonormal basis U ∈ Rm×k,

Im×m = UU> + U⊥U
>
⊥

This allows for a decomposition of any vector in Rm into range(U) and range(U⊥).

Theorem 1.4.11 (Wedin). Let A ∈ Rm×n with rank k and Â ∈ Rm×n with rank at least

k. Let U, Û ∈ Rm×k denote the top k left singular vectors of A, Â. If
∣∣∣∣∣∣Â−A∣∣∣∣∣∣

2
≤ εσk(A)

for some ε < 1/2, then∣∣∣∣∣∣Û>x∣∣∣∣∣∣
2
≥
√

1− ε20 ||x||2 ∀x ∈ range(U) (1.45)

where ε0 := ε/(1− ε) < 1.

Proof. Since we have ||y||2 = ||Uy||2 =
∣∣∣∣∣∣Ûy∣∣∣∣∣∣

2
for any y ∈ Rk, we can write

||y||22 =
∣∣∣∣∣∣Û Û>Uy∣∣∣∣∣∣2

2
+
∣∣∣∣∣∣Û⊥Û>⊥Uy∣∣∣∣∣∣2

2
=
∣∣∣∣∣∣Û>Uy∣∣∣∣∣∣2

2
+
∣∣∣∣∣∣Û>⊥Uy∣∣∣∣∣∣2

2

By Corollary 1.4.10, we have
∣∣∣∣∣∣Û>⊥U ∣∣∣∣∣∣2

2
≤ ε20 < 1, thus

∣∣∣∣∣∣Û>Uy∣∣∣∣∣∣2
2
≥
(

1−
∣∣∣∣∣∣Û>⊥U ∣∣∣∣∣∣2

2

)
||y||22 ≥

(
1− ε20

)
||y||22 ∀y ∈ Rk

Then the claim follows.
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1.4.3.1 Examples

We now show how Wedin’s theorem can be used in practice with some examples. In these

examples, we assume a matrix A ∈ Rm×n with rank k and an empirical estimate Â with

rank at least k. Let U, Û ∈ Rm×k denote the top k left singular vectors of A, Â.

In order to apply Wedin’s theorem, we must establish that the empirical estimate Â is

sufficiently accurate, so that∣∣∣∣∣∣Â−A∣∣∣∣∣∣
2
≤ εσk(A) ε < 1/2 (1.46)

Note that the condition depends on the smallest positive singular value of A. Let ε0 :=

ε/(1− ε) < 1.

Example 1.4.1 (Empirical invertibility, Hsu et al. [2008]). Let O ∈ Rm×k be a matrix such

that range(O) = range(U). Note that U>O ∈ Rk×k is invertible. We now show that Û>O

is also invertible if (1.46) holds. Apply (1.45) with x = Oz to obtain:∣∣∣∣∣∣Û>Oz∣∣∣∣∣∣
2
≥
√

1− ε20 ||Oz||2 ∀z ∈ Rk

Since σi(M) is the maximum of ||Mz||2 over orthonormally constrained z, this implies

σi

(
Û>O

)
≥
√

1− ε20 σi (O) ∀i ∈ [k]

In particular, σk

(
Û>O

)
> 0 and thus Û>O is invertible.

Example 1.4.2 (Empirical separability, Chapter 5 of the thesis). Assume that Q ∈ Rk×k

is an orthogonal matrix with columns qi ∈ Rk. That is,

q>i qj =

 1 if i = j

0 otherwise

Let Q̂ := Û>UQ with columns q̂i ∈ Rk. We can bound the separation between the columns

q̂i assuming that (1.46) holds. By Corollary 1.4.10, we have
∣∣∣∣∣∣Û>⊥Uqi∣∣∣∣∣∣

2
≤ ε0. Then since

||qi||2 =
∣∣∣∣∣∣Û Û>Uqi∣∣∣∣∣∣2 +

∣∣∣∣∣∣Û⊥Û>⊥Uqi∣∣∣∣∣∣2 = ||q̂i||2 +
∣∣∣∣∣∣Û>⊥Uqi∣∣∣∣∣∣2 = 1

we have

q̂>i q̂i = 1−
∣∣∣∣∣∣Û>⊥Uqi∣∣∣∣∣∣2

2
≥ 1− ε20
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Also, if i 6= j,

q̂>i q̂j = q>i U
>Û Û>Uqj

= q>i U
>
(
Im×m − Û⊥Û>⊥

)
Uqj

= q>i qj − qiU>Û⊥Û>⊥Uqj

= −qiU>Û⊥Û>⊥Uqj

≤
∣∣∣∣∣∣Û>⊥Uqi∣∣∣∣∣∣

2

∣∣∣∣∣∣Û>⊥Uqj∣∣∣∣∣∣
2

≤ ε20

where the first inequality is the Cauchy-Schwarz inequality.
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Chapter 2

Examples of Spectral Techniques

This chapter gives examples of spectral techniques in the literature to demonstrate the

range of spectral applications.

2.1 The Moore–Penrose Pseudoinverse

The Moore–Penrose pseudoinverse (or just the pseudoinverse) of a matrix A ∈ Rm×n

is the unique matrix A+ ∈ Rn×m such that1

1. AA+ ∈ Rn×n is the orthogonal projection onto range(A), and

2. A+A ∈ Rm×m is the orthogonal projection onto row(A).

A simple construction of the pseudoinverse A+ is given by an SVD of A.

Proposition 2.1.1. Let A ∈ Rm×n with r := rank(A) ≤ min{m,n}. Let A = UΣV > de-

note a rank-r SVD of A. Then A+ := V Σ−1U> ∈ Rm×n is a matrix such that AA+ ∈ Rn×n

1This is a simplified definition sufficient for the purposes of the thesis: see Section 6.7 of Friedberg et al.

[2003] for a formal treatment. It is defined as the matrix corresponding to a (linear) function L : Rn → Rm

such that

L(v) =

 u if ∃u such that v = Au (i.e., v ∈ range(A))

0 otherwise

from which the properties in the main text follow.
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is the orthogonal projection onto range(A) and A+A ∈ Rm×m is the orthogonal projection

onto row(A).

Proof. The orthogonal projections onto range(A) and row(A) are respectively given by UU>

and V V >, and since U>U = V >V = Ir×r,

AA+ = UΣV >V Σ−1U> = UU>

A+A = V Σ−1U>UΣV > = V V >

The pseudoinverse A+ is the unique minimizer of ||AX − Im×m||F over X ∈ Rn×m

(p. 257, Golub and Van Loan [2012]) and can be seen as a generalization of matrix inverse:

• If A has linearly independent columns (so A>A is invertible),

AA+ = Im×m

A+ = (A>A)−1A>

• If A has linearly independent rows (so AA> is invertible),

A+A = In×n

A+ = A>(AA>)−1

• If A is square and has full rank, then A+ = A−1.

2.2 Low-Rank Matrix Approximation

A celebrated application of SVD is the low-rank matrix approximation problem:

Theorem 2.2.1 (Eckart and Young [1936], Mirsky [1960]). Let A ∈ Rm×n. Let k ≤

min{m,n} and consider

Z∗ = arg min
Z∈Rm×n: rank(Z)≤k

||A− Z|| (2.1)

where ||·|| is an orthogonally invariant norm: ||M || = ||QMR|| for orthogonal Q and R

(e.g., the Frobenius norm ||·||F , the spectral norm ||·||2). Then an optimal solution is given

by a rank-k SVD of A, Z∗ = UkΣkV
>
k .
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Proof. Let A = UΣV be an SVD of A. Then

||A− Z||2 =
∣∣∣∣Σ− Z∣∣∣∣2 =

r∑
i=1

(
σi − Zi,i

)2
+
∑
i 6=j

Z2
i,j

where Z := U>ZV ∈ Rm×n has rank k. This is minimized (uniquely if σk > σk+1)

at
∑r

i=k+1 σ
2
i by a rectangular diagonal matrix Zi,i = σi for 1 ≤ i ≤ k, which implies

Z = UkΣkVk.

It is illuminating to examine a closely related unconstrained problem:

{b∗i }mi=1, {c∗i }ni=1 = arg min
b1...bm∈Rk

c1...cn∈Rk

∑
i,j

(
Ai,j − b>i cj

)2
(2.2)

which in matrix form can be written as

(B∗, C∗) = arg min
B∈Rk×m

C∈Rk×n

∣∣∣∣∣∣A−B>C∣∣∣∣∣∣
F

(2.3)

This is equivalent to (2.1) (with the Frobenius norm) since any matrix with rank at most

k can be expressed as B>C (e.g., by SVD) and rank(B>C) ≤ k. It has infinite level sets

since
∣∣∣∣A−B>C∣∣∣∣

F
=
∣∣∣∣A−B>C∣∣∣∣

F
for B = Q>B and C = Q−1C where Q is any k × k

invertible matrix. For convenience, we can fix the form B =

√
Σ̃kŨ

>
k and C =

√
Σ̃kṼ

>
k by

a rank-k SVD of B>C = ŨkΣ̃kṼ
>
k . The stationary conditions of (2.3) are then

AṼk = ŨkΣ̃k A>Ũk = ṼkΣ̃k

which imply that each stationary point is given by some k singular components of A.

In particular, the global minima are given by components corresponding to the largest k

singular values (Theorem 2.2.1). Surprisingly, all other stationary points are saddle points;

a proof can be found on page 29 of Ho [2008]. Thus (2.2) is a (very special type of)

non-convex objective for which SVD provides a global minimum.

A slight variant of (2.2) is the following:

{b∗i }mi=1, {c∗i }ni=1 = arg min
b1...bm∈Rk

c1...cn∈Rk

∑
i,j

Wi,j

(
Ai,j − b>i cj

)2
(2.4)

where W ∈ Rn×m is a non-negative weight matrix. Unfortunately, there is no SVD-based

closed-form solution to this problem [Srebro et al., 2003]. Unlike the unweighted case, the
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objective has local optima that are not saddle points and can be shown to be generally NP-

hard [Gillis and Glineur, 2011]. Despite the intractability, (2.4) is successfully optimized

by iterative methods (e.g., gradient descent) in numerous practical applications such as

recommender systems [Koren et al., 2009] and word embeddings [Pennington et al., 2014].

2.3 Finding the Best-Fit Subspace

A very practical interpretation of SVD is that of projecting data points to the “closest”

lower-dimensional subspace. Specifically, let x(1) . . . x(M) ∈ Rd be M data points in Rd.

Given k ≤ d, we wish to find an orthonormal basis V ∗ = [v∗1 . . . v
∗
k] ∈ Rd×k of a k-dimensional

subspace such that

V ∗ = arg min
V ∈Rd×k: V >V=Ik×k

M∑
i=1

∣∣∣∣∣∣x(i) − V V >x(i)
∣∣∣∣∣∣

2
(2.5)

The subspace span{v∗1 . . . v∗k} is called the best-fit subspace. Since x(i) − V V >x(i) is

orthogonal to V V >x(i), by the Pythagorean theorem∣∣∣∣∣∣x(i) − V V >x(i)
∣∣∣∣∣∣2

2
=
∣∣∣∣∣∣x(i)

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣V V >x(i)

∣∣∣∣∣∣2
2

=
∣∣∣∣∣∣x(i)

∣∣∣∣∣∣2
2
−
∣∣∣∣∣∣V >x(i)

∣∣∣∣∣∣2
2

Let X ∈ RM×d be a data matrix whose i-th row is given by x(i). Since
∑M

i=1

∣∣∣∣V >x(i)
∣∣∣∣2

2
=

Tr(V >X>XV ) = ||XV ||2F , (2.5) is equivalent to

V ∗ = arg max
V ∈Rd×k: V >V=Ik×k

||XV ||F (2.6)

An optimal solution is given by V ∗ = Vk where UkΣkV
>
k is a rank-k SVD of X. The

projected data points are given by the rows of X ∈ RM×k where

X = XVk = UkΣk (2.7)

2.4 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a classical spectral technique for dimensionality

reduction [Pearson, 1901]. A standard formulation of PCA is as follows [Jolliffe, 2002].
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Given a random variable X ∈ Rd, we wish to find m ≤ d vectors a1 . . . am ∈ Rd such that

for each i = 1 . . .m:

ai = arg max
a∈Rd

Var(a>X) (2.8)

subject to ||a||2 = 1, and

a>aj = 0 for all j < i

That is, a1 . . . am are orthonormal vectors such that ai is the direction of the i-th largest

variance of X. We express the objective in terms of the covariance matrix:

CX := E
[
(X −E[X])(X −E[X])>

]
as Var(a>X) = a>CXa. Since CX � 0, it has an eigendecomposition of the form CX =

UΛU> where U = [u1 . . . ud] is orthonormal and Λ = diag(λ1, . . . , λd) with λ1 ≥ . . . ≥ λd ≥

0. Then a solution

ai = arg max
a∈Rd

a>CXa (2.9)

subject to ||a||2 = 1, and

a>aj = 0 for all j < i

is given by ai = ui and the value of the maximized variance is the eigenvalue λi since

Var(a>i X) = a>i CXai = λi.

2.4.1 Best-Fit Subspace Interpretation

Let x(1) . . . x(M) be M samples of X with the sample mean µ̂ :=
∑M

i=1 x
(i)/M . The sample

covariance matrix is:

ĈX =
1

M

M∑
i=1

(x(i) − µ̂)(x(i) − µ̂)>

By pre-processing the data as x̄(i) := (x(i) − µ̂)/
√
M and organizing it into a matrix X̄ ∈

RM×d where X̄i = x̄(i), we can write:

ĈX = X̄>X̄
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Let X̄ = Û Σ̂V̂ > be an SVD of X̄ where Σ̂ = diag(σ̂1 . . . σ̂d) is a diagonal matrix of ordered

singular values σ̂1 ≥ . . . ≥ σ̂d ≥ 0 and V̂ = [v̂1 . . . v̂d] is the orthonormal matrix of right

singular vectors. Since ĈX = V̂ Σ̂2V̂ and it is an eigendecomposition in the desired form,

the i-th PCA direction is given by âi = v̂i and the value of the maximized variance is σ̂2
i .

We make a few observations on this result:

• There is no need to explicitly compute the sample covariance matrix ĈX and its

eigendecomposition. We can directly apply an SVD on the data matrix X̄.

• Since â1 . . . âm are the right singular vectors of
√
MX̄ corresponding to the largest m

singular values, the orthogonal projection Π̂ := [â1 . . . âm][â1 . . . âm]> minimizes

M∑
i=1

∣∣∣∣∣∣(x(i) − µ̂)− Π̂(x(i) − µ̂)
∣∣∣∣∣∣2

Hence PCA can be interpreted as finding the best-fit subspace of mean-centered data

points.

2.5 Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) is a classical spectral technique for analyzing the

correlation between two variables [Hotelling, 1936]. A standard formulation of CCA is as

follows [Hardoon et al., 2004]. Given a pair of random variables X ∈ Rd and Y ∈ Rd′ , we

wish to find m ≤ min(d, d′) pairs of vectors (a1, b1) . . . (am, bm) ∈ Rd × Rd′ such that for

each i = 1 . . .m:

(ai, bi) = arg max
(a,b)∈Rd×Rd′

Cor(a>X, b>Y ) (2.10)

subject to Cor(a>X, a>j X) = 0 for all j < i

Cor(b>Y, b>j Y ) = 0 for all j < i

That is, (ai, bi) projects (X,Y ) to 1-dimensional random variables (a>i X, b
>
i Y ) that are

maximally correlated, but a>i X is uncorrelated to a>j X for all j < i (respectively for Y ).

Note that the solution is not unique because the correlation coefficient Cor(Y,Z) is invariant
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under separate linear transformations on Y,Z ∈ R:

Cor(αY + γ, βZ + λ) = Cor(Y,Z)

for any constants α, β, γ, λ ∈ R where α and β are nonzero.

We express the objective in terms of the cross-covariance and covariance matrices:

CXY := E
[
(X −E[X])(Y −E[Y ])>

]
CX := E

[
(X −E[X])(X −E[X])>

]
CY := E

[
(Y −E[Y ])(Y −E[Y ])>

]
Since Cor(a>X, b>Y ) = a>CXY b/

√
(a>CXa)(b>CY b), we write:

(ai, bi) = arg max
(a,b)∈Rd×Rd′

a>CXY b (2.11)

subject to a>CXa = b>CY b = 1, and

a>CXaj = b>CY bj = 0 for all j < i

We now consider a change of basis c = C
1/2
X a and d = C

1/2
Y b. Assuming that CX and CY are

non-singular, we plug in a = C
−1/2
X c and b = C

−1/2
Y d above to obtain the auxiliary problem:

(ci, di) = arg max
(c,d)∈Rd×Rd′

c>C
−1/2
X CXY C

−1/2
Y d (2.12)

subject to c>c = d>d = 1, and

c>cj = d>dj = 0 for all j < i

whereupon the original solution is given by ai = C
−1/2
X ci and bi = C

−1/2
Y di.

A solution of (2.12) is given by ci = ui and di = vi where ui and vi are the left and right

singular vectors of

Ω := C
−1/2
X CXY C

−1/2
Y ∈ Rd×d

′

corresponding to the i-th largest singular value σi. The singular value σi is the value of the

maximized correlation since Cor(a>i X, b
>
i Y ) = a>i CXY bi = u>i Ωvi = σi, thus it is bounded

as 0 ≤ σi ≤ 1.

CCA can also be framed as inducing new coordinate systems for the input variables

X ∈ Rd and Y ∈ Rd′ , called the CCA coordinate systems, in which they have special

covariance structures.
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Proposition 2.5.1. Let X ∈ Rd and Y ∈ Rd′ be random variables with invertible covariance

matrices. Let UΣV > denote an SVD of Ω := C
−1/2
X CXY C

−1/2
Y and let A := C

−1/2
X U and

B := C
−1/2
Y V . If XCCA := A>(X −E[X]) and YCCA := B>(Y −E[Y ]),

• The covariance matrix of XCCA is Id×d.

• The covariance matrix of YCCA is Id′×d′.

• The cross-covariance matrix of XCCA and YCCA is Σ.

Proof. For the first claim,

E[XCCAX
>
CCA] = A>E[(X −E[X])(X −E[X])>]A = U>C

−1/2
X CXC

−1/2
X U = U>U = Id×d

The second claim follows similarly. For the third claim,

E[XCCAY
>
CCA] = A>E[(X −E[X])(Y −E[Y ])>]B = U>ΩV = Σ

That is, in the CCA coordinates, the dimensions i = 1 . . .min{d, d′} of each variable

are sorted (in descending order) by the strength of correlation with the corresponding

dimensions of the other variable.

2.5.1 Dimensionality Reduction with CCA

A significant part of the recent advance in spectral methods is due to the pioneering the-

oretical work by Kakade and Foster [2007] and Foster et al. [2008] that provides insights

into how CCA can be used for dimensionality reduction in certain scenarios. We give a

simplified version of these results.

The theory is based on multi-view learning for linear regression. Let X(1), X(2) ∈ Rd be

random variables with invertible covariance matrices representing two distinct “views” of

another variable (to be specified below). For simplicity, we assume that the two views have

the same dimension, but this can be easily relaxed.
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CCA coordinate convention Without loss of generality, we assume that X(1), X(2) are

already put in the coordinate systems induced by CCA between X(1) and X(1) (Proposi-

tion 2.5.1). Thus they have zero means, identity covariance matrices, and a diagonal cross-

covariance matrix Σ = diag(σ1 . . . σd) where σi := Cor
(
X

(1)
i , X

(2)
i

)
is the i-th maximized

correlation. This convention significantly simplifies the notations below. In particular, note

that for each v ∈ {1, 2}, the top m ≤ d most correlated dimensions of X(v) are simply its

first m entries which we denote by

X(v) := (X
(v)
1 . . . X(v)

m )

This choice of an m-dimensional representation of the original variable leads to desirable

properties under certain assumptions about the relation between X(1) and X(2) with respect

to the variable being predicted.

2.5.1.1 Assumption 1: Shared Latent Variable

The shared latent variable assumption is that there is some latent variable H ∈ Rm

where m ≤ d such that X(1), X(2) ∈ Rd are (i) conditionally independent given H, and (ii)

linear in H in expectation as follows: there exist full-rank matrices A(1), A(2) ∈ Rd×m such

that

E
[
X(1)|H

]
= A(1)H E

[
X(2)|H

]
= A(2)H (2.13)

We assume that E
[
HH>

]
= Im×m without loss of generality, since we can always whiten

H and the linearity assumption is preserved.

Theorem 2.5.1 (Theorem 3, Foster et al. [2008]). We make the shared latent variable

assumption defined above. Let A(∗|v) ∈ Rd×m denote the best linear predictor of H ∈ Rm

with X(v) ∈ Rd:

A(∗|v) := arg min
A∈Rd×m

E
[∣∣∣∣∣∣A>X(v) −H

∣∣∣∣∣∣
2

]
= E

[
X(v)H>

]
Let A(v) ∈ Rm×m denote the best linear predictor of H ∈ Rm with X(v) ∈ Rm:

A(v) := arg min
A∈Rm×m

E
[∣∣∣∣∣∣A>X(v) −H

∣∣∣∣∣∣
2

]
= E

[
X(v)H>

]
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Then the optimal predictor A(v) based on the top m most correlated dimensions is precisely

as good as the optimal predictor A(∗|v) based on all dimensions:(
A(∗|v)

)>
X(v) =

(
A(v)

)>
X(v)

Proof. With the conditional independence of X(1), X(2) and the linear relation (2.13),

Σ = E

[
X(1)

(
X(2)

)>]
= E

[
E

[
X(1)

(
X(2)

)> ∣∣∣∣H]]
= E

[
E
[
X(1)

∣∣H]E [X(2)
∣∣H]>]

= A(v) E
[
HH>

] (
A(v)

)>
= A(v)

(
A(v)

)>
Thus Σ ∈ Rd×d has rank m, implying that σm+1 = · · · = σd = 0. Let Σ ∈ Rm×m denote

the (m×m) upper left block of Σ. Next, observe that the best predictor A(∗|v) of H based

on X(v) is in fact A(v):

A(v) = arg min
A∈Rd×m

E

[∣∣∣∣∣∣AH −X(v)
∣∣∣∣∣∣2

2

]
= E

[
X(v)H>

]
= A(∗|v)

Together, we have(
A(∗|v)

)>
X(v) =

(
A(v)

)>
X(v) =

(
A(v)

)+
ΣX(v) =

(
A(v)

)+
ΣX(v) =

(
A(v)

)>
X(v)

where we used the fact that
(
A(v)

)>
=
(
A(v)

)+
Σ and that A(v) = E

[
X(v)H>

]
is the first

m rows of A(v) = E
[
X(v)H>

]
.

2.5.1.2 Assumption 2: Redundancy of the Views

Let Y ∈ R and D denote the joint distribution over (X(1), X(2), Y ) (expectations are with

respect to D unless otherwise noted). The redundancy assumption is that each individ-

ual view X(v) is nearly as (linearly) predictive of the response variable Y as the union of

them X := (X(1), X(2)). More precisely, if we denote the best possible predictor β∗ ∈ R2d

of Y with both views X ∈ R2d by

β∗ := arg min
β∈R2d

E
[
(β ·X − Y )2

]
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and denote the best possible predictor β(v) ∈ Rd of Y with only view X(v) ∈ Rd by

β(v) := arg min
β∈Rd

E
[
(β ·X(v) − Y )2

]
= E

[
X(v)Y

]
∀v ∈ {1, 2}

then the ε-redundancy assumption is that for some ε,

E

[(
β(v) ·X(v) − Y

)2
]
−E

[
(β∗ ·X − Y )2

]
≤ ε ∀v ∈ {1, 2} (2.14)

Lemma 2.5.2 (Lemma 2, Kakade and Foster [2007]). Under the ε-redundancy assumption,

the optimal predictor β(v) of Y with view X(v) ∈ Rd cannot have large weights corresponding

to weakly correlated dimensions,

d∑
i=1

(1− σi)
(
β

(v)
i

)2
≤ 4ε (2.15)

for each view v ∈ {1, 2}. Note that the bound is independent of d.

Proof. It follows from (2.14) that E
[(
β(1) ·X(1) − β(2) ·X(2)

)2] ≤ 4ε (Lemma 1, Kakade

and Foster [2007]). Furthermore, since X(v) is in the CCA coordinate system,

E

[(
β(1) ·X(1) − β(2) ·X(2)

)2
]

=

d∑
i=1

(
β

(1)
i

)2
+
(
β

(2)
i

)2
− 2σiβ

(1)
i β

(2)
i

=

d∑
i=1

(1− σi)
(
β

(1)
i

)2
+ (1− σi)

(
β

(2)
i

)2
+ σi

(
β

(1)
i − β

(2)
i

)2

≥
d∑
i=1

(1− σi)
(
β

(v)
i

)2
∀v ∈ {1, 2}

Together, the stated bound is implied.

Lemma 2.5.2 motivates discarding weakly correlated dimensions. Let

m =
∣∣∣{i ∈ [d] : Cor

(
X

(1)
i , X

(2)
i

)
≥ 1−

√
ε
}∣∣∣

be the number of (1−
√
ε)-strongly correlated dimensions. Define a thresholded esti-

mator β
(v)
threshold ∈ Rd by

[β
(v)
threshold]i :=

 E[X
(v)
i Y ] if Cor

(
X

(1)
i , X

(2)
i

)
≥ 1−

√
ε

0 otherwise
(2.16)



CHAPTER 2. EXAMPLES OF SPECTRAL TECHNIQUES 47

which can be thought of as a biased estimator of β(v). Note that β
(v)
threshold ·X(v) = β(v) ·X(v),

where β(v) denotes the optimal linear predictor of Y with X(v) ∈ Rm:

β(v) := arg min
β∈Rd

E
[
(β ·X(v) − Y )2

]
= E

[
X(v)Y

]
∀v ∈ {1, 2}

Sample estimates We assume a set of n samples of (X(1), X(2), Y ) drawn iid from the

distribution D,

T := {(x(1)
1 , x

(2)
1 , y1) . . . (x(1)

n , x(2)
n , yn)}

We use the superscript ∧ to denote empirical estimates. For instance, β̂(v) ∈ Rd is defined

as β̂(v) := 1
n

∑n
l=1 x

(v)
l yl, and β̂

(v) ∈ Rm is defined as β̂
(v)

:= 1
n

∑n
l=1[x

(v)
l ]iyl for i ∈ [m].

Note that the sample estimates are with respect to a fixed T . We use ET [·] to denote the

expected value with respect to T .

Theorem 2.5.3 (Theorem 2, Kakade and Foster [2007]). We make the ε-redundancy as-

sumption defined above. Assuming E[Y 2|X] ≤ 1, the empirical estimate of β(v) ∈ Rm incurs

the regret (in expectation)

ET

[
regret∗T

(
β̂

(v)
)]
≤
√
ε(
√
ε+ 4) +

m

n

where regret∗T is relative to the best possible predictor β∗ ∈ R2d using both views X ∈ R2d:

regret∗T

(
β̂

(v)
)

:= E

[(
β̂

(v) ·X(v) − Y
)2
]
−E

[
(β∗ ·X − Y )2

]

A remarkable aspect of this result is that as the number of samples n increases, the

empirical estimate of the biased estimator β
(v)
threshold converges2 to the optimal estimator β∗

with no dependence on the original dimension d; it only depends on the number of (1−
√
ε)-

strongly correlated dimensions m. Thus if m � d, then we need much fewer samples to

estimate the biased estimator β
(v)
threshold than to estimate the unbiased estimators β(v) or β∗

(in which case the regret depends on d) to achieve (nearly) optimal regret.

2The suboptimality
√
ε(
√
ε+ 4) is due to bias and (2.14).
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Proof of Theorem 2.5.3. By (2.14), it is sufficient to show that

ET

[
regretT

(
β̂

(v)
)]
≤ 4
√
ε+

m

n

where regretT is relative to the best possible predictor β(v) ∈ Rd using view X(v) ∈ Rd:

regretT

(
β̂

(v)
)

:= E

[(
β̂

(v) ·X(v) − Y
)2
]
−E

[(
β(v) ·X(v) − Y

)2
]

The regret takes a particularly simple form because of linearity and the choice of coordinates.

Given a fixed set of samples T (so that β̂
(v)

is not random),

regretT

(
β̂

(v)
)

:= E

[(
β̂

(v) ·X(v) − Y
)2
]
−E

[(
β(v) ·X(v) − Y

)2
]

= β̂
(v) · β̂(v) − β(v) · β(v) − 2β̂

(v) ·E[X(v)Y ] + 2β(v) ·E[X(v)Y ]

=
∣∣∣∣∣∣β̂(v)

threshold

∣∣∣∣∣∣2
2
− 2β̂

(v)
threshold · β(v) +

∣∣∣∣∣∣β(v)
∣∣∣∣∣∣2

2

=
∣∣∣∣∣∣β̂(v)

threshold − β(v)
∣∣∣∣∣∣2

2

This allows for a bias-variance decomposition of the expected regret:

ET

[
regretT

(
β̂

(v)
)]

= ET

[∣∣∣∣∣∣β̂(v)
threshold − β(v)

∣∣∣∣∣∣2
2

]
=
∣∣∣∣∣∣β(v)

threshold − β(v)
∣∣∣∣∣∣2

2
+ ET

[∣∣∣∣∣∣β̂(v)
threshold − β(v)

∣∣∣∣∣∣2
2

]
=
∣∣∣∣∣∣β(v)

threshold − β(v)
∣∣∣∣∣∣2

2
+

m∑
i=1

Var
(
β̂

(v)

i

)
The first term corresponds to the bias of the estimator, and the second term is the amount

of variance with respect to T .

To bound the variance term, note that:

Var
(
β̂

(v)

i

)
=

1

n
Var

(
X

(v)
i Y

)
≤ 1

n
E

[(
X

(v)
i Y

)2
]

=
1

n
E

[(
X

(v)
i

)2
E
[
Y 2|X

]]
≤ 1

n
E

[(
X

(v)
i

)2
]

=
1

n

where the second variance is with respect to D. We used the assumption that E[Y 2|X] ≤ 1.

So the variance term is bounded by m/n.

To bound the bias term, it is crucial to exploit the multi-view assumption (2.14). For

all i > m we have σi < 1−
√
ε and thus 1 ≤ (1− σi)/

√
ε, so∣∣∣∣∣∣β(v)

threshold − β(v)
∣∣∣∣∣∣2

2
=
∑
i>m

(
β

(v)
i

)2
≤

d∑
i=1

(
β

(v)
i

)2
≤

d∑
i=1

1− σi√
ε

(
β

(v)
i

)2
≤ 4
√
ε
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where the last step is by (2.15) and makes the bias term independent of d.

Connection to semi-supervised learning The theory suggest a natural way to utilize

unlabeled data with CCA to augment supervised training. In a semi-supervised scenario,

we assume that the amount of labeled samples is limited: (x
(1)
1 , y1) . . . (x

(1)
n , yn) samples of

(X(1), Y ) for some small n. But if there is a second view X(2) as predictive of Y as X(1)

(i.e., the redundancy assumption) for which it is easy to obtain a large amount of unlabeled

samples of (X(1), X(2)),

(x
(1)
1 , x

(2)
1 ) . . . (x

(1)
n′ , x

(2)
n′ ) n′ � n

then we can leverage these unlabeled samples to accurately estimate CCA projection vec-

tors. These projection vectors are used to eliminate the dimensions of the labeled samples

x
(1)
1 . . . x

(1)
n that are not strongly correlated with the other view’s. Theorem 2.5.3 implies

that the supervised model trained on these low dimensional samples (corresponding to the

thresholded estimator) converges to the optimal model at a faster rate.

2.6 Spectral Clustering

Spectral clustering refers to partitioning vertices in an undirected graph by matrix decom-

position [Donath and Hoffman, 1973; Fiedler, 1973]. Here, we give one example framed

as finding vertex representations suitable for the clustering problem [Shi and Malik, 2000];

this approach is closely relevant to our word clustering method in Chapter 5. For other

examples of spectral clustering, see Von Luxburg [2007].

Given an undirected weighted graph described in Example 1.2.3, we wish to find a

partition P = {A1 . . . Am} of vertices [n] where m ≤ n. One sensible formulation is to

minimize the “flow” W (A,A) :=
∑

i∈A, j∈Awij between each cluster A ∈ P and its com-

plement A := [n]\A to encourage cluster independence, while normalizing by the “volume”

vol(A) :=
∑

i∈A di to discourage an imbalanced partition. This gives the following objective:

P∗ = arg min
P

∑
A∈P

W (A,A)

vol(A)
(2.17)
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This problem is NP-hard [Wagner and Wagner, 1993], but there is a spectral method for

solving a relaxed version of this problem.

In this method, vertex i is represented as the i-th row of a matrix XP ∈ Rn×m where:

[XP ]i,c =


1√

vol(Ac)
if i ∈ Ac

0 otherwise
(2.18)

with respect to a specific partition P = {A1 . . . Am} of [n]. Note that X>PDXP = Im×m

(for all P) by design. We invoke the following fact:

∑
A∈P

W (A,A)

vol(A)
= Tr(X>PLXP)

where L denotes the unnormalized graph Laplacian L := W −D. This holds by properties

of L and the definition of XP ; see Von Luxburg [2007] for a proof. Use this fact to rewrite

the clustering objective as

X∗ = arg min
XP∈Rn×m

Tr(X>PLXP) (2.19)

XP has the form in (2.18) for some P

whereupon the optimal clusters can be recovered as: i ∈ Ac iff X∗i,c > 0. We obtain a

relaxation of (2.19) by weakening the explicit form constraint as:

X̃ = arg min
X∈Rn×m

Tr(X>LX) (2.20)

subject to X>DX = Im×m

Using a change of basis U = D1/2X and plugging in X = D−1/2U above, we can solve

Ũ = arg min
U∈Rn×m

Tr(U>D−1/2LD−1/2U) (2.21)

subject to U>U = Im×m

and let X̃ = D−1/2Ũ . It can be verified that the solution of (2.21) is given by the orthonor-

mal eigenvectors of D−1/2LD−1/2 (called the normalized graph Laplacian) corresponding to

the m smallest eigenvalues 0 ≤ λ1 ≤ . . . ≤ λm. More directly, the solution of (2.20) is given
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by the eigenvectors of D−1L corresponding to the same eigenvalues Λ := diag(λ1, . . . , λm)

since

(D−1/2LD−1/2)Ũ = ΛŨ ⇐⇒ D−1LX̃ = ΛX̃

This gives the clustering algorithm of Shi and Malik [2000]:

1. Construct the normalized graph Laplacian L = D−1L.

2. (Rank-m eigendecomposition) Compute the eigenvectors of L corresponding to the

smallest m eigenvalues as columns of matrix X̃ ∈ Rn×m.

3. Cluster the rows of X̃ into m groups A1 . . . Am (e.g., with k-means).

In summary, the method approximates the idealized vertex representations X∗ in (2.19)

(which, if given, can be used to trivially recover the optimal clusters) with a surrogate rep-

resentation X̃ that is efficiently computable with an eigendecomposition of the normalized

graph Laplacian. While this approximation can be arbitrarily suboptimal in the worst case

[Guattery and Miller, 1998], it is effective in practice [Shi and Malik, 2000; Ng et al., 2002].

2.7 Subspace Identification

Spectral methods have recently garnered much interest as a promising approach to learning

latent-variable models. A pioneering work in this direction is the spectral algorithm of

Hsu et al. [2008] for estimating distributions under HMMs. The Hsu et al. method is an

amalgam of many ideas; see the paper for a detailed discussion. A crucial component of

the method is the use of SVD to identify a low-dimensional subspace associated with the

model. We give a brief, informal review of their algorithm and its extension by Foster et

al. [2012] from an angle of subspace identification.

Consider an HMM with m hidden states h ∈ [m] and n observation states x ∈ [n] where

m� n. This HMM can be parametrized as a matrix-vector tuple (T,O, π) where

T ∈ Rm×m : Th′,h = transition probability from state h to h′

O ∈ Rn×m : Ox,h = emission probability from state h to observation x

π ∈ Rm : πh = prior probability of state h
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It is well-known (and easily checkable) that with the following definition of “observable

operators” (A, a∞, a1) [Ito et al., 1992; Jaeger, 2000]

A(x) := T diag(Ox,1 . . . Ox,m) ∀x ∈ [n]

a>∞ := 1>m

a1 := π

(1m is a vector of ones in Rm), the probability of any observation sequence x1 . . . xN ∈ [n]

under the HMM is given by a product of these operators:

p(x1 . . . xN ) = a>∞A(xN ) · · ·A(x1)a1 (2.22)

That is, (2.22) is the matrix form of the forward algorithm [Rabiner, 1989]. The approach

pursued by Hsu et al. [2008] and Foster et al. [2012] is to instead estimate certain linear

transformations of the operators:

B(x) := GA(x)G+ ∀x ∈ [n] (2.23)

b>∞ := a>∞G
+ (2.24)

b1 := Ga1 (2.25)

where G is a matrix such that G+G = Im×m. It is clear that the forward algorithm can be

computed by (B, b∞, b1), since

p(x1 . . . xN ) = a>∞A(xN ) · · ·A(x1)a1

= a>∞G
+GA(xN )G+G · · ·G+GA(x1)G+Ga1

= b>∞B(xN ) · · ·B(x1)b1

Let X1, X2 ∈ [n] be random variables corresponding to the first two observations under the

HMM (where we assume the usual generative story). A central quantity considered by Hsu

et al. [2008] is a matrix of bigram probabilities P2,1 ∈ Rn×n defined as

[P2,1]x′,x := P (X1 = x,X2 = x′) ∀x, x′ ∈ [n] (2.26)

The matrix relates the past observation (X1) to the future observation (X2). It can be

shown that this matrix can be expressed in terms of the HMM parameters as (Lemma 3,
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Hsu et al. [2008]):

P2,1 = OT diag(π)O> (2.27)

It follows that rank(P2,1) = m if O, T,diag(π) have full-rank—even though the dimension

of the matrix is n× n.

Hsu et al. [2008] apply SVD on P2,1 to identify the m-dimensional subspace spanned

by the conditional emission distributions: (O1,h, . . . , On,h) for all h ∈ [m]. Specifically, if

P2,1 = UΣV > is a rank-m SVD, then it can be shown that (Lemma 2, Hsu et al. [2008])

range(U) = range(O) (2.28)

This projection matrix U ∈ Rn×m is then used to reduce the dimension of observations from

Rn to Rm, whereupon the linearly transformed operators (2.23–2.25) are recovered by the

method of moments. Importantly, the spectral dimensionality reduction leads to polynomial

sample complexity (Theorem 6, Hsu et al. [2008]; Theorem 1, Foster et al. [2012]).

Note that the statement is about the true probabilities P2,1 under the HMM. In order

to establish finite sample complexity bounds, we must consider the empirical estimate P̂2,1

of P2,1 where each entry

[P̂2,1]x′,x :=
1

N

N∑
i=1

[[
X1 = x,X2 = x′

]]
∀x, x′ ∈ [n]

is estimated from a finite number of samples N , and examine how a rank-m SVD Û Σ̂V̂ >

of P̂2,1 behaves with respect to a rank-m SVD UΣV > of P2,1 as a function of N . Deriving

such bounds can be quite involved (see Section 1.4) and is a major technical contribution

of Hsu et al. [2008].

It should be emphasized that the subspace identification component can be disentangled

from the method of moments. In particular, it can be verified that removing U in their

definitions of ~b1, ~b∞, and Bx in Hsu et al. [2008] still results in a consistent estimator of the

distribution in (2.22).

2.8 Alternating Minimization Using SVD

Ando and Zhang [2005] propose learning a shared structure across multiple related classifi-

cation tasks over a single domain. Specifically, they consider T binary classification tasks
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each of which has its own linear classifier ft : Rd → R mapping a d-dimensional feature

vector x ∈ Rd to a classification score

ft(x) := (ut + Θvt)
>x (2.29)

Here, ut ∈ Rd and vt ∈ Rm are task-specific parameters but Θ ∈ Rd×m is a global parameter

shared by all classifiers f1 . . . fT (we assume m ≤ min{d, T}). In particular, if Θ is zero

then each classifier is an independent linear function u>t x. The predicted label is the sign

of the classification score sign(ft(x)) ∈ {±1}.

The parameter sharing makes the estimation problem challenging, but Ando and Zhang

[2005] develop an effective alternating loss minimization algorithm using a variational prop-

erty of SVD. To illustrate their method, let L : R×{±1} → R be a convex loss function for

classification, for instance the hinge loss L(p, y) = max(0, 1 − py).3 For each task t ∈ [T ],

we are given nt labeled samples (x(1|t), y(1|t)) . . . (x(nt|t), y(nt|t)) ∈ Rd × {±1}. A training

objective is given by the following empirical loss minimization:

min
ut∈Rd ∀t∈[T ]
vt∈Rm ∀t∈[T ]

Θ∈Rd×m

T∑
t=1

(
r(ut, vt) +

1

nt

nt∑
i=1

L
(

(ut + Θvt)
>x(i|t), y(i|t)

))
+R(Θ) (2.30)

where r(ut, vt) and R(Θ) are appropriate regularizers for the parameters. In other words,

we minimize the sum of average losses (averaging is necessary since the amount of labeled

data can vary greatly for each task).

Ando and Zhang [2005] choose a particular version of (2.30) to accomodate the use of

SVD, given by

min
ut∈Rd ∀t∈[T ]
vt∈Rm ∀t∈[T ]

Θ∈Rd×m: Θ>Θ=Im×m

T∑
t=1

(
λt ||ut||22 +

1

nt

nt∑
i=1

L
(

(ut + Θvt)
>x(i|t), y(i|t)

))
(2.31)

Note that the parameters vt are not regularized: r(ut, vt) = λt ||ut||22 for some hyperparam-

eter λt ≥ 0. Also, Θ is constrained to be an orthonormal matrix and is thus implicitly

3Ando and Zhang [2005] use a quadratically smoothed hinge loss called modified Huber:

L(p, y) =

 max(0, 1− py)2 if py ≥ −1

−4py otherwise
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regularized. With an orthonormal Θ ∈ Rd×m, the problem can be interpreted as finding an

m-dimensional subspace of Rd which is predictive of labels across all T tasks. If xΘ := Θ>x

denotes the m-dimensional representation of x ∈ Rd projected in the subspace range(Θ),

every ft computes the classification score of x by using this representation:

ft(x) = u>t x+ v>t xΘ

The objective (2.31) can be re-written with the change of variable wt := ut + Θvt:

min
wt∈Rd ∀t∈[T ]
vt∈Rm ∀t∈[T ]

Θ∈Rd×m: Θ>Θ=Im×m

T∑
t=1

(
λt ||wt −Θvt||22 +

1

nt

nt∑
i=1

L
(
w>t x

(i|t), y(i|t)
))

(2.32)

Clearly, the original solution can be recovered from the solution of this formulation by

ut = wt −Θvt. The intuition behind considering (2.32) instead of (2.31) is that this allows

us to separate the parameters Θ and vt from the loss function L(·, ·) if we fix wt.

Theorem 2.8.1 (Ando and Zhang [2005]). Assume the parameters wt ∈ Rd are fixed in

(2.32) for all t ∈ [T ]. Define A := [
√
λ1w1 . . .

√
λTwT ] ∈ Rd×T , and let U = [u1 . . . um] ∈

Rd×m be the left singular vectors of A corresponding to the largest m ≤ min{d, T} singular

values. Then the optimal solution for the parameters Θ ∈ Rd×m (under the orthogonality

constraint Θ>Θ = Im×m) and vt ∈ Rm is given by Θ∗ = U and v∗t = U>wt for all t ∈ [T ].

Proof. Since wt’s are fixed, the objective (2.32) becomes

min
vt∈Rm ∀t∈[T ]

Θ∈Rd×m: Θ>Θ=Im×m

T∑
t=1

λt ||wt −Θvt||22

Note that for any value of orthonormal Θ, the optimal solution for each vt is given by

regression (Θ>Θ)−1Θ>wt = Θ>wt. Thus we can plug in vt = Θ>wt in the objective to

remove dependence on all variables except for Θ,

min
Θ∈Rd×m: Θ>Θ=Im×m

T∑
t=1

λt

∣∣∣∣∣∣wt −ΘΘ>wt

∣∣∣∣∣∣2
2

Since
∣∣∣∣wt −ΘΘ>wt

∣∣∣∣2
2

= ||wt||22 − w>t ΘΘ>wt, the objective is equivalent to

max
Θ∈Rd×m: Θ>Θ=Im×m

∣∣∣∣∣∣A>Θ
∣∣∣∣∣∣2
F
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Thus the columns of an optimal Θ∗ are given by the left singular vectors of A corresponding

to the largest m singular values (Theorem 1.3.4). This also gives the claim on v∗t .

The theorem yields an alternating minimization strategy for optimizing (2.32). That is,

iterate the following two steps until convergence:

• Fix Θ and vt’s: optimize the convex objective (2.32) (convex in wt).

• Fix wt’s: compute optimal values of Θ and vt in (2.32) with SVD (Theorem 2.8.1).

Note, however, that in general this does not guarantee the global optimality of the output

parameters wt, vt, and Θ.

2.9 Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is the following problem: given a non-negative

matrix A ∈ Rn×d (i.e., Ai,j ≥ 0 for all i and j), and also a rank value m ≤ min{n, d}, find

non-negative matrices B ∈ Rn×m and C ∈ Rm×d such that A = BC (the existence of such

B and C is often given by task-specific assumptions). If Mi denotes the i-th row of matrix

M , it can be easily verified that

Ai =
m∑
j=1

Bi,j × Cj (2.33)

In other words, a row of A is a (non-negative) linear combination of the rows of C. Thus

NMF can be seen as finding a set of “dictionary” rows C1 . . . Cm that can be non-negatively

added to realize all n rows of A. NMF arises naturally in many applications.

Example 2.9.1 (Image analysis [Lee and Seung, 1999]). Suppose that each row of A ∈ Rn×d

is a facial image represented as a vector of d non-negative pixel values. Let B ∈ Rn×m

and C ∈ Rm×d be non-negative matrices such that A = BC. Then each facial image

Ai = Bi,1C1 + · · · + Bi,mCm is a non-negative linear combination of m “basis images”

C1 . . . Cm.

Example 2.9.2 (Document analysis [Blei et al., 2003; Arora et al., 2012b]). Suppose that

each row of A ∈ Rn×d is a document represented as the document’s distribution over d word
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types (thus non-negative). Let B ∈ Rn×m and C ∈ Rm×d be non-negative matrices such

that A = BC and additionally that each row of B sums to 1. Then the word distribution

under the i-th document Ai = Bi,1C1 + · · · + Bi,mCm is a convex combination of the word

distributions under m “topics” C1 . . . Cm.

Note that while NMF is matrix decomposition, it is somewhat divorced from the the-

ory of eigendecompositon. NMF is often implicit in parameter estimation of probabilistic

models; for instance, learning the parameters of latent Dirichlet allocation can be seen as

an implicit NMF [Arora et al., 2012b].

Donoho and Stodden [2003] provide an intuitive geometric interpretation of NMF which

also leads to an understanding of when an NMF is unique. Since all values involved in the

characterization of A’s row

Ai =
m∑
j=1

Bi,j × Cj

are non-negative, we have that

• Ai is a vector residing in the positive orthant of Rd.

• C1 . . . Cm are vectors also in the positive orthant of Rd such that any Ai can be

expressed as their combination (scaled by scalars Bi,1 . . . Bi,m ≥ 0).

Hence NMF can be viewed as finding a conical hull enclosing all A1 . . . An.4 If A1 . . . An

do not lie on every axis, there are infinitely many conical hulls that enclose A1 . . . An and

hence NMF does not have a unique solution. Using this intuition, Donoho and Stodden

[2003] provide a separability condition for when an NMF is unique.

Vavasis [2009] shows that NMF is NP-hard in general, but Arora et al. [2012b; 2012a]

develop a provable NMF algorithm by exploiting a natural separability condition. In par-

ticular, Arora et al. [2012a] derive a purely combinatorial method for extracting dictionary

rows C1 . . . Cm and successfully apply it to learning topic models. In Chapter 7, we extend

this framework to learning hidden Markov models.

4When each row of B is contrained to sum to 1 (as in Example 2.9.2), then NMF can be viewed as finding

a convex hull enclosing all A1 . . . An.
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2.10 Tensor Decomposition

(We borrow the tensor notation in previous work [Lim, 2006; Anandkumar et al., 2014].)

A p-th order tensor T is a p-dimensional array with entries Ti1...ip ∈ R (e.g., a matrix

is a second-order tensor). For simplicity, we only consider p ≤ 3. A tensor T ∈ Rn1×n2×n3

defines a function that maps input matrices V1, V2, V3, where Vi ∈ Rni×mi , to an output

tensor T (V1, V2, V3) ∈ Rm1×m2×m3 as follows:

[T (V1, V2, V3)]i,j,k :=
∑
i′,j′,k′

Ti′,j′,k′ [V1]i′,i[V2]j′,j [V3]k′,k (2.34)

This nonlinear function is called multilinear since it is linear in Vi if all input matrices are

fixed except Vi. A tensor T ∈ Rn×n×n is called supersymmetric if its entries are invariant

to a permutation on indices, that is, [T ]i,j,k = [T ]i,k,j = · · · . The rank of a supersymmetric

T is defined to be the smallest non-negative integer m such that T =
∑m

i=1 viv
>
i v
>
i for some

vectors v1 . . . vm ∈ Rn. Given vectors {u, v, w}, the notation uv>w> denotes a rank-1 tensor

with entries [uv>w>]i,j,k = [u]i[v]j [w]k (analogous to the matrix outer product).

The above terms are similarly defined for the first- and second-order tensors (i.e., vectors

and matrices). Note that a supersymmetric second-order tensor M ∈ Rn1×n2 reduces to

the standard definition of a symmetric matrix; the rank of M reduces to the number of

nonzero eigenvalues (Proposition 1.2.1); and the tensor product (2.34) reduces to the matrix

product M(V1, V2) = V >1 MV2. The notation (2.34) also accommodates bypassing certain

input positions with identity matrices. For example, the matrix-vector product can be

expressed as M(In1×n1 , v) = Mv ∈ Rn1 . For a supersymmetric tensor T ∈ Rn×n×n, a unit

eigenvector v ∈ Rn of T is a unit-length vector with a corresponding eigenvalue λ ∈ R

such that

T (In×n, v, v) = λv (2.35)

which is a direct analogue of the matrix counterpart (1.18).

Tensor decomposition is often useful (e.g., in the method of moments). Unfortunately,

many of the tools developed in conventional linear algebra do not generalize to higher-

order tensors. For instance, while a symmetric matrix always has an efficiently computable

eigendecomposition (Theorem 1.2.6), it is not the case for a higher-order supersymmetric
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tensor T [Qi, 2005]. While the low-rank matrix approximation problem can be solved

efficiently using SVD (Section 2.2), computing even a rank-1 approximation of T :

min
u,v,w

∣∣∣∣∣∣T − uv>w>∣∣∣∣∣∣
F

(2.36)

(where ||T ||F =
√∑

i,j,k T
2
i,j,k) is NP-hard (Theorem 1.13, Hillar and Lim [2013]).

Anandkumar et al. [2014] show that the problem is much more manageable if tensors are

orthogonal in addition to being supersymmetric. Specifically, they assume a supersymmetric

and orthogonal tensor T ∈ Rn×n×n of rank-m, that is,

T =

m∑
i=1

λiviv
>
i v
>
i (2.37)

where v1 . . . vm ∈ Rn are orthonormal and λ1 ≥ . . . ≥ λm > 0. Since T (In×n, vi, vi) = λivi,

each (vi, λi) is an eigenvector-eigenvalue pair. In this case, a random initial vector v ∈ Rn

under the tensor power iterations:

v 7→ T (In×n, v, v)

||T (In×n, v, v)||2
(2.38)

converges to some vi (Theorem 4.1, Anandkumar et al. [2014]). Thus the eigencomponents

of T can be extracted through the power iteration method similar to the matrix case in

Figure 1.3. Note a subtle difference: the extracted eigencomponents may not be in a

descending order of eigenvalues, since the iteration (2.38) converges to some eigenvector vi,

not necessarily v1.

Another important contribution of Anandkumar et al. [2014] is a scheme to orthogonalize

a rank-m supersymmetric tensor T =
∑m

i=1wiuiu
>
i u
>
i where w1 ≥ . . . ≥ wm > 0 but

u1 . . . um are not necessarily orthogonal (but assumed to be linearly independent) with a

corresponding rank-m symmetric matrix M =
∑m

i=1wiuiu
>
i . Let W ∈ Rn×m be a whitening

matrix for M , that is,

M(W,W ) =

m∑
i=1

(
√
wiW

>ui)(
√
wiW

>ui)
> = Im×m

For instance, one can set W = V Λ−1/2 where M = V ΛV > is a rank-m SVD of M . This

implies that
√
w1W

>u1 . . .
√
wmW

>um ∈ Rm are orthonormal. Then the (m × m × m)
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tensor

T (W,W,W ) =
m∑
i=1

1
√
wi

(
√
wiW

>ui)(
√
wiW

>ui)
>(
√
wiW

>ui)
>

is orthogonal and is decomposable by the tensor power iteration method T (W,W,W ) =∑m
i=1 λiviv

>
i v
>
i . The original variables can be recovered as wi = 1/λ2

i and ui = λi(W
>)+vi.

In summary, the method of Anandkumar et al. [2014] can be used to recover linearly

independent u1 . . . um ∈ Rn and positive scalars w1 . . . wm ∈ R from supersymmetric second-

and third-order tensors of rank m:

M =
m∑
i=1

wiuiu
>
i (2.39)

T =
m∑
i=1

wiuiu
>
i u
>
i (2.40)

Anandkumar et al. [2014] show that this can be used as a learning algorithm for a variety of

latent-variable models. For instance, consider learning a bag-of-words model with n word

types and m topic types. The task is to estimate the model parameters

• wi ∈ R: probability of topic i ∈ [m]

• ui ∈ Rn: conditional distribution over n word types given topic i ∈ [m]

Then it is easily verifiable that the observable quantities M ∈ Rn×n and T ∈ Rn×n×n

where Mi,j is the probability of words i, j ∈ [n] occurring together in a document (not

necessarily consecutively) and Ti,j,k is the probability of words i, j, k ∈ [n] occurring together

in a document (not necessarily consecutively) have the form (2.39) and (2.40). Thus the

parameters (wi, ui) can be estimated by tensor decomposition.

We mention that there is ongoing progress in tensor decomposition. For example, see

Kuleshov et al. [2015] for a decomposition scheme applicable to a wider class of tensors.
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