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Abstract

The choice of negative examples is important
in noise contrastive estimation. Recent works
find that hard negatives—highest-scoring in-
correct examples under the model—are effec-
tive in practice, but they are used without a
formal justification. We develop analytical
tools to understand the role of hard negatives.
Specifically, we view the contrastive loss as a
biased estimator of the gradient of the cross-
entropy loss, and show both theoretically and
empirically that setting the negative distribu-
tion to be the model distribution results in bias
reduction. We also derive a general form of
the score function that unifies various architec-
tures used in text retrieval. By combining hard
negatives with appropriate score functions, we
obtain strong results on the challenging task of
zero-shot entity linking.

1 Introduction

Noise contrastive estimation (NCE) is a widely
used approach to large-scale classification and re-
trieval. It estimates a score function of input-
label pairs by a sampled softmax objective: given
a correct pair (x, y1), choose negative examples
y2 . . . yK and maximize the probability of (x, y1)
in a softmax over the scores of (x, y1) . . . (x, yK).
NCE has been successful in many applications, in-
cluding information retrieval (Huang et al., 2013),
entity linking (Gillick et al., 2019), and open-
domain question answering (Karpukhin et al.,
2020).

It is well known that making negatives “hard”
can be empirically beneficial. For example, Gillick
et al. (2019) propose a hard negative mining strat-
egy in which highest-scoring incorrect labels under
the current model are chosen as negatives. Some
works even manually include difficult examples
based on external information such as a ranking
function (Karpukhin et al., 2020) or a knowledge
base (Févry et al., 2020).

While it is intuitive that such hard negatives help
improve the final model by making the learning
task more challenging, they are often used without
a formal justification. Existing theoretical results in
contrastive learning are not suitable for understand-
ing hard negatives since they focus on uncondi-
tional negative distributions (Gutmann and Hyväri-
nen, 2012; Mnih and Teh, 2012; Ma and Collins,
2018; Tian et al., 2020) or consider a modified
loss divergent from practice (Bengio and Senécal,
2008).

In this work, we develop analytical tools to un-
derstand the role of hard negatives. We formalize
hard-negative NCE with a realistic loss (5) using a
general conditional negative distribution, and view
it as a biased estimator of the gradient of the cross-
entropy loss. We give a simple analysis of the
bias (Theorem 3.1). We then consider setting the
negative distribution to be the model distribution,
which recovers the hard negative mining strategy of
Gillick et al. (2019), and show that it yields an unbi-
ased gradient estimator when the model is optimal
(Theorem 3.2). We complement the gradient-based
perspective with an adversarial formulation (Theo-
rem 3.3).

The choice of architecture to parametrize the
score function is another key element in NCE.
There is a surge of interest in developing effi-
cient cross-attentional architectures (Humeau et al.,
2020; Khattab and Zaharia, 2020; Luan et al.,
2020), but they often address different tasks and
lack direct comparisons. We give a single algebraic
form of the score function (9) that subsumes and
generalizes these works, and directly compare a
spectrum of architectures it induces.

We present experiments on the challenging task
of zero-shot entity linking (Logeswaran et al.,
2019). We calculate empirical estimates of the
bias of the gradient estimator to verify our analysis,
and systematically explore the joint space of neg-
ative examples and architectures. We have clear



practical recommendations: (i) hard negative min-
ing always improves performance for all architec-
tures, and (ii) the sum-of-max encoder (Khattab
and Zaharia, 2020) yields the best recall in entity
retrieval. Our final model combines the sum-of-
max retriever with a BERT-based joint reranker to
achieve 67.1% unnormalized accuracy: a 4.1% ab-
solute improvement over Wu et al. (2020). We
also present complementary experiments on AIDA
CoNLL-YAGO (Hoffart et al., 2011) in which we
finetune a Wikipedia-pretrained dual encoder with
hard-negative NCE and show a 6% absolute im-
provement in accuracy.

2 Review of NCE

Let X and Y denote input and label spaces. We
assume |Y| < ∞ for simplicity. Let pop denote
a joint population distribution over X × Y . We
define a score function sθ : X × Y → R differ-
entiable in θ ∈ Rd. Given sampling access to
pop, we wish to estimate θ such that the classifier
x 7→ arg maxy∈Y sθ(x, y) (breaking ties arbitrar-
ily) has the optimal expected zero-one loss. We can
reduce the problem to conditional density estima-
tion. Given x ∈ X , define

pθ(y|x) =
exp (sθ(x, y))∑

y′∈Y exp (sθ(x, y′))
(1)

for all y ∈ Y . Let θ∗ denote a minimizer of the
cross-entropy loss:

JCE(θ) = E
(x,y)∼pop

[− log pθ(y|x)] (2)

If the score function is sufficiently expressive, θ∗

satisfies pθ∗(y|x) = pop(y|x) by the usual prop-
erty of cross entropy. This implies that sθ∗ can be
used as an optimal classifier.

The cross-entropy loss is difficult to optimize
when Y is large since the normalization term in (1)
is expensive to calculate. In NCE, we dodge this
difficulty by subsampling. Given x ∈ X and any
K labels y1:K = (y1 . . . yK) ∈ YK , define

πθ(k|x, y1:K) =
exp (sθ(x, yk))∑K

k′=1 exp (sθ(x, yk′))
(3)

for all 1 ≤ k ≤ K. When K � |Y|, (3) is signifi-
cantly cheaper to calculate than (1). Given K ≥ 2,
we define

JNCE(θ) = E
(x,y1)∼pop
y2:K∼qK−1

[− log πθ(1|x, y1:K)] (4)

where y2:K ∈ YK−1 are negative examples drawn
iid from some “noise” distribution q over Y . Pop-
ular choices of q include the uniform distribu-
tion q(y) = 1/ |Y| and the population marginal
q(y) = pop(y).

The NCE loss (4) has been studied extensively.
An optimal classifier can be extracted from a mini-
mizer of JNCE (Ma and Collins, 2018); minimizing
JNCE can be seen as maximizing a lower bound on
the mutual information between (x, y) ∼ pop if q
is the population marginal (Oord et al., 2018). We
refer to Stratos (2019) for an overview. However,
most of these results focus on unconditional neg-
ative examples and do not address hard negatives,
which are clearly conditional. We now focus on
conditional negative distributions, which are more
suitable for describing hard negatives.

3 Hard Negatives in NCE

Given K ≥ 2, we define

JHARD(θ) = E
(x,y1)∼pop
y2:K∼h(·|x,y1)

[− log πθ(1|x, y1:K)]

(5)

where y2:K ∈ YK−1 are negative examples drawn
from a conditional distribution h(·|x, y1) given
(x, y1) ∼ pop. Note that we do not assume y2:K
are iid. While simple, this objective captures the
essence of using hard negatives in NCE, since the
negative examples can arbitrarily condition on the
input and the gold (e.g., to be wrong but difficult to
distinguish from the gold) and be correlated (e.g.,
to avoid duplicates).

We give two interpretations of optimizing JHARD.
First, we show that the gradient of JHARD is a bi-
ased estimator of the gradient of the cross-entropy
loss JCE. Thus optimizing JHARD approximates opti-
mizing JCE when we use a gradient-based method,
where the error depends on the choice of h(·|x, y1).
Second, we show that the hard negative mining
strategy can be recovered by considering an ad-
versarial setting in which h(·|x, y1) is learned to
maximize the loss.

3.1 Gradient Estimation

We assume an arbitrary choice of h(·|x, y1) and
K ≥ 2. Denote the bias at θ ∈ Rd by

b(θ) = ∇JCE(θ)−∇JHARD(θ)



To analyze the bias, the following quantity will be
important. For x ∈ X define

γθ(y|x) = Pr
y1∼pop(·|x)
y2:K∼h(·|x,y1)
k∼πθ(·|x,y1:K)

(yk = y) (6)

for all y ∈ Y . That is, γθ(y|x) is the probabil-
ity that y is included as a candidate (either as the
gold or a negative) and then selected by the NCE
discriminator (3).

Theorem 3.1. For all i = 1 . . . d,

bi(θ) = E
x∼pop

∑
y∈Y

εθ(y|x)
∂sθ(x, y)

∂θi


where εθ(y|x) = pθ(y|x)− γθ(y|x).

Proof. Fix any x ∈ X and let JxCE(θ) and JxHARD(θ)
denote JCE(θ) and JHARD(θ) conditioned on x. The
difference JxCE(θ)− JxHARD(θ) is

logZθ(x)− E
y1∼pop(·|x)
y2:K∼h(·|x,y1)

[logZθ(x, y1:K)] (7)

where we define Zθ(x) =
∑

y′∈Y exp (sθ(x, y
′))

and Zθ(x, y1:K) =
∑K

k=1 exp(sθ(x, yk)). For
any (x̃, ỹ), the partial derivative of (7) with re-
spect to sθ(x̃, ỹ) is given by [[x = x̃]] pθ(ỹ|x) −
[[x = x̃]] γθ(ỹ|x) where [[A]] is the indicator func-
tion that takes the value 1 if A is true and 0 other-
wise. Taking an expectation of their difference
over x ∼ pop gives the partial derivative of
b(θ) = JCE(θ)− JHARD(θ) with respect to sθ(x̃, ỹ):
pop(x̃)(pθ(ỹ|x̃) − γθ(ỹ|x̃)). The statement fol-
lows from the chain rule:

bi(θ) =
∑

x∈X ,y∈Y

∂b(θ)

∂sθ(x, y)

∂sθ(x, y)

∂θi

Theorem 3.1 states that the bias vanishes if
γθ(y|x) matches pθ(y|x). Hard negative mining
can be seen as an attempt to minimize the bias by
defining h(·|x, y1) in terms of pθ. Specifically, we
define

h(y2:K |x, y1)

∝ [[|{y1 . . . yK}| = K]]

K∏
k=2

pθ(yk|x) (8)

Thus h(·|x, y1) has support only on y2:K ∈ YK−1
that are distinct and do not contain the gold. Greedy

sampling from h(·|x, y1) corresponds to taking
K − 1 incorrect label types with highest scores.
This coincides with the hard negative mining strat-
egy of Gillick et al. (2019).

The absence of duplicates in y1:K ensures
JCE(θ) = JHARD(θ) if K = |Y|. This is consis-
tent with (but does not imply) Theorem 3.1 since in
this case γθ(y|x) = pθ(y|x). For general K < |Y|,
Theorem 3.1 still gives a precise bias term. To gain
a better insight into its behavior, it is helpful to
consider a heuristic approximation given by1

γθ(y|x) ≈ pθ(y|x) exp (sθ(x, y))

Nθ(x)

where Nθ(x) =
∑

y′∈Y pθ(y
′|x) exp (sθ(x, y

′)).
Plugging this approximation in Theorem 3.1 we
have a simpler equation

bi(θ) ≈ E
(x,y)∼pop

[
(1− δθ(x, y))

∂sθ(x, y)

∂θi

]
where δθ(x, y) = exp (sθ(x, y)) /Nθ(x). The ex-
pression suggests that the bias becomes smaller
as the model improves since pθ(·|x) ≈ pop(·|x)
implies δθ(x, y) ≈ 1 where (x, y) ∼ pop.

We can formalize the heuristic argument to prove
a desirable property of (5): the gradient is unbiased
if θ satisfies pθ(y|x) = pop(y|x), assuming iid
hard negatives.

Theorem 3.2. Assume K ≥ 2 and the distribu-
tion h(y2:K |x, y1) =

∏K
k=2 pθ(yk|x) in (5). If

pθ(y|x) = pop(y|x), then ∇JHARD(θ) = ∇JCE(θ).

Proof. Since pop(y|x) = exp(sθ(x, y))/Zθ(x),
the probability γθ(y|x) in (6) is

∑
y1:K∈YK

K∏
k=1

exp (sθ(x, yk))

Zθ(x)

exp (sθ(x, y))

Zθ(x, y1:K)

=
exp (sθ(x, y))

Zθ(x)

∑
y1:K∈YK

∏K
k=1 exp (sθ(x, yk))

Zθ(x, y1:K)

The sum marginalizes a product distribution over
y1:K , thus equals one. Hence γθ(y|x) = pθ(y|x).
The statement follows from Theorem 3.1.

1We can rewrite γθ(y|x) as

E
y1∼pop(·|x)
y2:K∼h(·|x,y1)

[
county1:K (y) exp (sθ(x, y))∑

y′∈Y county1:K (y′) exp (sθ(x, y′))

]

where county1:K (y) is the number of times y appears in y1:K .
The approximation uses county1:K (y) ≈ pθ(y|x) under (8).



The proof exploits the fact that negative exam-
ples are drawn from the model and does not gen-
erally hold for other negative distributions (e.g.,
uniformly random). We empirically verify that
hard negatives indeed yield a drastically smaller
bias compared to random negatives (Section 6.4).

3.2 Adversarial Learning
We complement the bias-based view of hard neg-
atives with an adversarial view. We generalize (5)
and define

JADV(θ, h) = E
(x,y1)∼pop
y2:K∼h(·|x,y1)

[− log πθ(1|x, y1:K)]

where we additionally consider the choice of a hard-
negative distribution. The premise of adversarial
learning is that it is beneficial for θ to consider
the worst-case scenario when minimizing this loss.
This motivates a nested optimization problem:

min
θ∈Rd

max
h∈H

JADV(θ, h)

whereH denotes the class of conditional distribu-
tions over S ⊂ Y satisfying |S ∪ {y1}| = K.

Theorem 3.3. Fix θ ∈ Rd. For any (x, y1), pick

ỹ2:K ∈ arg max
y2:K∈YK−1:
|{y1...yK}|=K

K∑
k=2

sθ(x, yk)

breaking ties arbitrarily, and define the point-mass
distribution over YK−1:

h̃(y2:K |x, y1) = [[yk = ỹk ∀k = 2 . . .K]]

Then h̃ ∈ arg maxh∈H JADV(θ, h).

Proof. maxh∈H JADV(θ, h) is equivalent to

max
h∈H

E
(x,y1)∼pop
y2:K∼h(·|x,y1)

[
log

K∑
k=1

exp (sθ(x, yk))

]

The expression inside the expectation is maxi-
mized by ỹ2:K by the monotonicity of log and exp,
subject to the constraint that |{y1 . . . yK}| = K.
h̃ ∈ H achieves this maximum.

4 Score Function

Along with the choice of negatives, the choice of
the score function sθ : X×Y → R is a critical com-
ponent of NCE in practice. There is a clear trade-
off between performance and efficiency in model-
ing the cross interaction between the input-label

pair (x, y). This trade-off spurred many recent
works to propose various architectures in search
of a sweet spot (Humeau et al., 2020; Luan et al.,
2020), but they are developed in isolation of one
another and difficult to compare. In this section,
we give a general algebraic form of the score func-
tion that subsumes many of the existing works as
special cases.

4.1 General Form

We focus on the standard setting in NLP in which
x ∈ VT and y ∈ VT ′ are sequences of tokens in
a vocabulary V . Let E(x) ∈ RH×T and F (y) ∈
RH×T ′ denote their encodings, typically obtained
from the final layers of separate pretrained trans-
formers like BERT (Devlin et al., 2019). We follow
the convention popularized by BERT and assume
the first token is a special symbol (i.e., [CLS]), so
that E1(x) and F1(y) represent single-vector sum-
maries of x and y. We have the following design
choices:

• Direction: If x→ y, define the queryQ = E(x)
and key K = F (y). If y → x, define the query
Q = F (y) and key K = E(x).
• Reduction: Given integers m,m′, reduce the

number of columns in Q and K to obtain Qm ∈
RH×m and Km′ ∈ RH×m′ . We can simply se-
lect leftmost columns, or introduce an additional
layer to perform the reduction.
• Attention: Choose a column-wise attention

Attn : A 7→ sA either Soft or Hard. If Soft,
sAt = softmax(At) where the subscript denotes
the column index. If Hard, sAt is a vector of
zeros with exactly one 1 at index arg maxi[At]i.

Given the design choices, we define the score of
(x, y) as

sθ(x, y) = 1>mQ
>
mKm′Attn

(
K>m′Qm

)
(9)

where 1m is a vector of m 1s that aggregates query
scores. Note that the query embeddingsQm double
as the value embeddings. The parameter vector
θ ∈ Rd denotes the parameters of the encoders
E,F and the optional reduction layer.

4.2 Examples

Dual encoder. Choose either direction x→ y or
y → x. Select the leftmost m = m′ = 1 vectors in
Q and K as the query and key. The choice of atten-
tion has no effect. This recovers the standard dual



encoder used in many retrieval problems (Gupta
et al., 2017; Lee et al., 2019; Logeswaran et al.,
2019; Wu et al., 2020; Karpukhin et al., 2020; Guu
et al., 2020): sθ(x, y) = E1(x)>F1(y).

Poly-encoder. Choose the direction y → x. Se-
lect the leftmost m = 1 vector in F (y) as the
query. Choose an integer m′ and compute Km′ =
E(x)Soft(E(x)>O) where O ∈ RH×m′ is a learn-
able parameter (“code” embeddings). Choose soft
attention. This recovers the poly-encoder (Humeau
et al., 2020): sθ(x, y) = F1(y)>Cm′(x, y) where
Cm′(x, y) = Km′Soft

(
K>m′F1(y)

)
. Similar archi-

tectures without length reduction have been used
in previous works, for instance the neural attention
model of Ganea and Hofmann (2017).

Sum-of-max. Choose the direction x → y. Se-
lect all m = T and m′ = T ′ vectors in E(x) and
F (y) as the query and key. Choose Attn = Hard.
This recovers the sum-of-max encoder (aka., Col-
BERT) (Khattab and Zaharia, 2020): sθ(x, y) =∑T

t=1 maxT
′

t′=1Et(x)>Ft′(y).

Multi-vector. Choose the direction x → y. Se-
lect the leftmost m = 1 and m′ = 8 vec-
tors in E(x) and F (y) as the query and key.
Choose Attn = Hard. This recovers the multi-
vector encoder (Luan et al., 2020): sθ(x, y) =
maxm

′
t′=1E1(x)>Ft′(y). It reduces computation to

fast dot products over cached embeddings, but is
less expressive than the sum-of-max.

The abstraction (9) is useful because it gener-
ates a spectrum of architectures as well as unifying
existing ones. For instance, it is natural to ask if
we can further improve the poly-encoder by using
m > 1 query vectors. We explore these questions
in experiments.

5 Related Work

We discuss related work to better contextualize
our contributions. There is a body of work on
developing unbiased estimators of the population
distribution by modifying NCE. The modifications
include learning the normalization term as a model
parameter (Gutmann and Hyvärinen, 2012; Mnih
and Teh, 2012) and using a bias-corrected score
function (Ma and Collins, 2018). However, they
assume unconditional negative distributions and do
not explain the benefit of hard negatives in NCE
(Gillick et al., 2019; Wu et al., 2020; Karpukhin
et al., 2020; Févry et al., 2020). In contrast, we

directly consider the hard-negative NCE loss used
in practice (5), and justify it as a biased estimator
of the gradient of the cross-entropy loss.

Our work is closely related to prior works on
estimating the gradient of the cross-entropy loss,
again by modifying NCE. They assume the follow-
ing loss (Bengio and Senécal, 2008), which we will
denote by JPRIOR(θ):

E
(x,y1)∼pop

y2:K∼ν(·|x,y1)K

[
− log

exp (s̄θ(x, y1, y1))∑K
k=1 exp (s̄θ(x, y1, yk))

]
(10)

Here, ν(·|x, y1) is a conditional distribution over
Y\ {y1}, and s̄θ(x, y

′, y) is equal to sθ(x, y) if
y = y′ and sθ(x, y)− log((K − 1)ν(y|x, y1)) oth-
erwise. It can be shown that∇JPRIOR(θ) = ∇JCE(θ)
iff ν(y|x, y1) ∝ exp(sθ(x, y)) for all y ∈ Y\ {y1}
(Blanc and Rendle, 2018). However, (10) requires
adjusting the score function and iid negative exam-
ples, thus less aligned with practice than (5). The
bias analysis of ∇JPRIOR(θ) for general ν(·|x, y1)
is also significantly more complicated than Theo-
rem 3.1 (Rawat et al., 2019).

There is a great deal of recent work on un-
supervised contrastive learning of image embed-
dings in computer vision (Oord et al., 2018; Hjelm
et al., 2019; Chen et al., 2020, inter alia). Here,
sθ(x, y) = Eθ(x)>Fθ(y) is a similarity score be-
tween images, and Eθ or Fθ is used to produce
useful image representations for downstream tasks.
The model is again learned by (4) where (x, y1)
are two random corruptions of the same image and
y2:K are different images. Robinson et al. (2021)
propose a hard negative distribution in this setting
and analyze the behavior of learned embeddings
under that distribution. In contrast, our setting is
large-scale supervised classification, such as entity
linking, and our analysis is concerned with NCE
with general hard negative distributions.

In a recent work, Xiong et al. (2021) consider
contrastive learning for text retrieval with hard neg-
atives obtained globally from the whole data with
asynchronous updates, as we do in our experiments.
They use the framework of importance sampling
to argue that hard negatives yield gradients with
larger norm, thus smaller variance and faster con-
vergence. However, their argument does not imply
our theorems. They also assume a pairwise loss,
excluding non-pairwise losses such as (4).



6 Experiments

We now study empirical aspects of the hard-
negative NCE (Section 3) and the spectrum of score
functions (Section 4). Our main testbed is Zeshel
(Logeswaran et al., 2019), a challenging dataset
for zero-shot entity linking. We also present com-
plementary experiments on AIDA CoNLL-YAGO
(Hoffart et al., 2011).2

6.1 Task

Zeshel contains 16 domains (fictional worlds like
Star Wars) partitioned to 8 training and 4 validation
and test domains. Each domain has tens of thou-
sands of entities along with their textual descrip-
tions, which contain references to other entities in
the domain and double as labeled mentions. The
input x is a contextual mention and the label y is
the description of the referenced entity. A score
function sθ(x, y) is learned in the training domains
and applied to a new domain for classification and
retrieval. Thus the model must read descriptions of
unseen entities and still make correct predictions.

We follow prior works and report micro-
averaged top-64 recall and macro-averaged accu-
racy for evaluation. The original Zeshel paper (Lo-
geswaran et al., 2019) distinguishes normalized
vs unnormalized accuracy. Normalized accuracy
assumes the presence of an external retriever and
considers a mention only if its gold entity is in-
cluded in top-64 candidates from the retriever. In
this case, the problem is reduced to reranking and
a computationally expensive joint encoder can be
used. Unnormalized accuracy considers all men-
tions. Our goal is to improve unnormalized accu-
racy.

Logeswaran et al. (2019) use BM25 for retrieval,
which upper bounds unnormalized accuracy by its
poor recall (first row of Table 1). Wu et al. (2020)
propose a two-stage approach in which a dual en-
coder is trained by hard-negative NCE and held
fixed, then a BERT-based joint encoder is trained to
rerank the candidates retrieved by the dual encoder.
This approach gives considerable improvement in
unnormalized accuracy, primarily due to the better
recall of a trained dual encoder over BM25 (sec-
ond row of Table 1). We show that we can further
push the recall by optimizing the choice of hard
negatives and architectures.

2Our code is available at: https://github.com/
WenzhengZhang/hard-nce-el.

6.2 Architectures
We represent x and y as length-128 wordpiece se-
quences where the leftmost token is the special
symbol [CLS]; we mark the boundaries of a men-
tion span in x with special symbols. We use two
independent BERT-bases to calculate mention em-
beddings E(x) ∈ R768×128 and entity embeddings
F (y) ∈ R768×128, where the columnsEt(x), Ft(y)
are contextual embeddings of the t-th tokens.

Retriever. The retriever defines sθ(x, y), the
score between a mention x and an entity y, by
one of the architectures described in Section 4.2:

E1(x)>F1(y) (DUAL)

F1(y)>Cm(x, y) (POLY-m)

maxmt=1E1(x)>Ft(y) (MULTI-m)∑128
t=1 max128

t′=1Et(x)>Ft′(y) (SOM)

denoting the dual encoder, the poly-encoder
(Humeau et al., 2020), the multi-vector encoder
(Luan et al., 2020), and the sum-of-max encoder
(Khattab and Zaharia, 2020). These architectures
are sufficiently efficient to calculate sθ(x, y) for
all entities y in training domains for each mention
x. This efficiency is necessary for sampling hard
negatives during training and retrieving candidates
at test time.

Reranker. The reranker defines sθ(x, y) =
w>E1(x, y)+ b where E(x, y) ∈ RH×256 is BERT

(either base H = 768 or large H = 1024) embed-
dings of the concatenation of x and y separated by
the special symbol [SEP], and w, b are parameters
of a linear layer. We denote this encoder by JOINT.

6.3 Optimization
Training a retriever. A retriever is trained by
minimizing an empirical estimate of the hard-
negative NCE loss (5),

ĴHARD(θ) = − 1

N

N∑
i=1

log
exp (sθ(xi, yi,1))∑K

k′=1 exp
(
sθ(xi, yi,k′)

)
(11)

where (x1, y1,1) . . . (xN , yN,1) denote N mention-
entity pairs in training data, and yi,2 . . . yi,K ∼
h(·|xi, yi,1) are K − 1 negative entities for the i-
th mention. We vary the choice of negatives as
follows.

• Random: The negatives are sampled uniformly
at random from all entities in training data.

https://github.com/WenzhengZhang/hard-nce-el
https://github.com/WenzhengZhang/hard-nce-el
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Figure 1: Synthetic experiments. We use a feedforward
network to estimate the population distribution by mini-
mizing sampled cross entropy in each step (x-axis). We
show the NCE loss (left) and the norm of the gradient
bias (right) using hard vs random negatives.

• Hard: The negatives are sampled from (8) each
epoch. That is, in the beginning of each training
pass, for each i we sample entities yi,2 . . . yi,K
from Y\ {yi,1} without replacement with prob-
abilities proportional to exp (sθ(xi, yi,k)). This
is slightly different from, and simpler than, the
original hard negative mining strategy of Gillick
et al. (2019) which pretrains the model using
random negatives then greedily adds negative
entities that score higher than the gold.
• Mixed-p: p percent of the negatives are hard, the

rest are random. Previous works have shown
that such a combination of random and hard neg-
atives can be effective. We find the performance
is not sensitive to the value of p (Appendix A).

We experimented with in-batch sampling as done
in previous works (e.g., Gillick et al. (2019)), but
found sampling from all training data to be as ef-
fective and more straightforward (e.g., the number
of random negatives is explicitly unrelated to the
batch size). We use K = 64 in all experiments.

Training a reranker. We use JOINT only for
reranking by minimizing (11) with top-63 nega-
tives given by a fixed retriever, where we vary the
choice of retriever. We also investigate other archi-
tectures for reranking such as the poly-encoder and
the sum-of-max encoder, but we find the full cross
attention of JOINT to be indispensable. Details of
reranking experiments can be found in Appendix B.

Other details. All models are trained up to 4
epochs using Adam. We tune the learning rate over
{5e−5, 2e−5, 1e−5} on validation data. We use
the training batch size of 4 mentions for all models

Model Negatives Val Test
BM25 – 76.22 69.13
Wu et al. (2020) Mixed (10 hard) 91.44 82.06
DUAL Random 91.08 81.80

Hard 91.99 84.87
Mixed-50 91.75 84.16

DUAL-(10) Hard 91.57 83.08
POLY-16 Random 91.05 81.73

Hard 92.08 84.07
Mixed-50 92.18 84.34

MULTI-8 Random 91.13 82.44
Hard 92.35 84.94

Mixed-50 92.76 84.11
SOM Random 92.51 87.62

Hard 94.49 88.68
Mixed-50 94.66 89.62

Table 1: Top-64 recalls over different choices of archi-
tecture and negative examples for a retriever trained by
NCE. Wu et al. (2020) train a dual encoder by NCE
with 10 hard negatives. DUAL-(10) is DUAL trained
with the score-adjusted loss (10).

except for JOINT, for which we use 2. Training
time is roughly half a day on a single NVIDIA
A100 GPU for all models, except the SOM retriever
which takes 1-2 days.

6.4 Bias

We conduct experiments on synthetic data to em-
pirically validate our bias analysis in Section 3.1.
Analogous experiments on Zeshel with similar find-
ings can be found in Appendix C.

We construct a population distribution over 1000
labels with small entropy to represent the peaky
conditional label distribution pop(y|x). We use a
feedforward network with one ReLU layer to esti-
mate this distribution by minimizing the empirical
cross-entropy loss based on 128 iid samples per
update. At each update, we compute cross-entropy
(2) exactly, and estimate NCE (5) with 4 negative
samples by Monte Carlo (10 simulations).

Figure 1 plots the value of the loss function (left)
and the norm of the gradient bias (right) across
updates. We first observe that hard NCE yields
an accurate estimate of cross entropy even with 4
samples. In contrast, random NCE quickly con-
verges to zero, reflecting the fact that the model
can trivially discriminate between the gold and ran-
dom labels. We next observe that the bias of the
gradient of hard NCE vanishes as the model dis-
tribution converges to the population distribution,
which supports our analysis that the bias becomes
smaller as the model improves. The bias remains
nonzero for random NCE.



Model Retriever Negatives Joint Reranker Unnormalized
Val Test

Logeswaran et al. (2019) BM25 – base – 55.08
Logeswaran et al. (2019)+DAP BM25 – base – 55.88
Wu et al. (2020) DUAL (base) Mixed (10 hard) base – 61.34
Wu et al. (2020) DUAL (base) Mixed (10 hard) large – 63.03
Ours DUAL (base) Hard base 69.14 65.42

DUAL (base) Hard large 68.31 65.32
SOM (base) Hard base 69.19 66.67
SOM (base) Hard large 70.08 65.95
SOM (base) Mixed-50 base 69.22 65.37
SOM (base) Mixed-50 large 70.28 67.14

Table 2: Unnormalized accuracies with two-stage training. DAP refers to domain adaptive pre-training on source
and target domains.

Mention . . . his temporary usurpation of the Imperial throne by invading and seized control of the Battlespire, the purpose of this being to cripple
the capacity of the Imperial College of Battlemages, which presented a threat to Tharn’s power as Emperor. Mehrunes Dagon was
responsible for the destruction of Mournhold at the end of the First Era, and apparently also . . .

Random 1. Mehrunes Dagon is one of the seventeen Daedric Princes of Oblivion and the primary antagonist of . . .
2. Daedric Forces of Destruction were Mehrunes Dagon’s personal army, hailing from his realm of Oblivion, the Deadlands. . . .
3. Weir Gate is a device used to travel to Battlespire from Tamriel. During the Invasion of the Battlespire, Mehrunes Dagon’s forces . . .
4. Jagar Tharn was an Imperial Battlemage and personal adviser to Emperor Uriel Septim VII. Tharn used the Staff of Chaos . . .
5. House Sotha was one of the minor Houses of Vvardenfell until its destruction by Mehrunes Dagon in the times of Indoril Nerevar. . . .
6. Imperial Battlespire was an academy for training of the Battlemages of the Imperial Legion. The Battlespire was moored in . . .

Hard 1. Fall of Ald’ruhn was a battle during the Oblivion Crisis. It is one of the winning battles invading in the name of Mehrunes Dagon . . .
2. Daedric Forces of Destruction were Mehrunes Dagon’s personal army, hailing from his realm of Oblivion, the Deadlands. . . .
3. House Sotha was one of the minor Houses of Vvardenfell until its destruction by Mehrunes Dagon in the times of Indoril Nerevar. . . .

4. Sack of Mournhold was an event that occurred during the First Era. It was caused by the Dunmer witch Turala Skeffington . . .
5. Mehrunes Dagon of the House of Troubles is a Tribunal Temple quest, available to the Nerevarine in . . .
6. Oblivion Crisis, also known as the Great Anguish to the Altmer or the Time of Gates by Mankar Camoran, was a period of major turmoil . . .

Table 3: A retrieval example with hard negative training on Zeshel. We use a SOM retriever trained with random
vs hard negatives (92.51 vs 94.66 in top-64 validation recall). We show a validation mention (destruction) whose
gold entity is retrieved by the hard-negative model but not by the random-negative model. Top entities are shown
for each model (title boldfaced); the correct entity is Sack of Mournhold (checkmarked).

6.5 Retrieval

Table 1 shows the top-64 recall (i.e., the percentage
of mentions whose gold entity is included in the 64
entities with highest scores under a retriever trained
by (5)) as we vary architectures and negative ex-
amples. We observe that hard and mixed negative
examples always yield sizable improvements over
random negatives, for all architectures. Our dual en-
coder substantially outperforms the previous dual
encoder recall by Wu et al. (2020), likely due to
better optimization such as global vs in-batch ran-
dom negatives and the proportion of hard negatives.
We also train a dual encoder with the bias-corrected
loss (10) and find that this does not improve recall.
The poly-encoder and the multi-vector models are
comparable to but do not improve over the dual en-
coder. However, the sum-of-max encoder delivers
a decisive improvement, especially with hard nega-
tives, pushing the test recall to above 89%. Based
on this finding, we use DUAL and SOM for retrieval
in later experiments.

6.6 Results

We show our main results in Table 2. Following Wu
et al. (2020), we do two-stage training in which we
train a DUAL or SOM retriever with hard-negative
NCE and train a JOINT reranker to rerank its top-64
candidates. All our models outperform the previous
best accuracy of 63.03% by Wu et al. (2020). In
fact, our dual encoder retriever using a BERT-base
reranker outperforms the dual encoder retriever us-
ing a BERT-large reranker (65.42% vs 63.03%).
We obtain a clear improvement by switching the
retriever from dual encoder to sum-of-max due
to its high recall (Table 1). Using a sum-of-max
retriever trained with mixed negatives and a BERT-
large reranker gives the best result 67.14%.

6.7 Qualitative Analysis

To better understand practical implications of hard
negative mining, we compare a SOM retriever
trained on Zeshel with random vs hard negatives
(92.51 vs 94.66 in top-64 validation recall). The



Model Accuracy
BLINK without finetuning 80.27
BLINK with finetuning 81.54
DUAL with p = 0 82.40
DUAL with p = 50 88.01
MULTI-2 with p = 50 88.39
MULTI-3 with p = 50 87.94

Table 4: Test accuracies on AIDA CoNLL-YAGO.
BLINK refers to the two-stage model of Wu et al. (2020)
pretrained on Wikipedia. All our models are initialized
from the BLINK dual encoder and finetuned using all
5.9 million Wikipedia entities as candidates.

mention categories most frequently improved are
Low Overlap (174 mentions) and Multiple Cate-
gories (76 mentions) (see Logeswaran et al. (2019)
for the definition of these categories), indicating
that hard negative mining makes the model less
reliant on string matching. A typical example of
improvement is shown in Table 3. The random-
negative model retrieves person, device, or insti-
tution entities because they have more string over-
lap (e.g. “Mehrunes Dagon”, “Battlespire”, and
“Tharn”). In contrast, the hard-negative model ap-
pears to better understand that the mention is re-
ferring to a chaotic event like the Fall of Ald’ruhn,
Sack of Mournhold, and Oblivion Crisis and rely
less on string matching. We hypothesize that this
happens because string matching is sufficient to
make a correct prediction during training if neg-
ative examples are random, but insufficient when
they are hard.

To examine the effect of encoder architecture,
we also compare a DUAL vs SOM retriever both
trained with mixed negatives (91.75 vs 94.66 in top-
64 validation recall). The mention categories most
frequently improved are again Low Overlap (335
mentions) and Multiple Categories (41 mentions).
This indicates that cross attention likewise helps the
model less dependent on simple string matching,
presumably by allowing for a more expressive class
of score functions.

6.8 Results on AIDA

We complement our results on Zeshel with ad-
ditional experiments on AIDA. We use BLINK,
a Wikipedia-pretrained two-stage model (a dual
encoder retriever pipelined with a joint reranker,
both based on BERT) made available by Wu et al.

(2020).3 We extract the dual encoder module from
BLINK and finetune it on AIDA using the training
portion. During finetuning, we use all 5.9 million
Wikipedia entities as candidates to be consistent
with prior work. Because of the large scale of the
knowledge base we do not consider SOM and fo-
cus on the MULTI-m retriever (DUAL is a special
case with m = 1). At test time, all models con-
sider all Wikipedia entities as candidates. For both
AIDA and the Wikipedia dump, we use the version
prepared by the KILT benchmark (Petroni et al.,
2020).

Table 4 shows the results. Since Wu et al. (2020)
do not report AIDA results, we take the perfor-
mance of BLINK without and with finetuning from
their GitHub repository and the KILT leaderboard.4

We obtain substantially higher accuracy by mixed-
negative training even without reranking.5 There is
no significant improvement from using m > 1 in
the multi-vector encoder on this task.

7 Conclusions

Hard negatives can often improve NCE in practice,
substantially so for entity linking (Gillick et al.,
2019), but are used without justification. We have
formalized the role of hard negatives in quantifying
the bias of the gradient of the contrastive loss with
respect to the gradient of the full cross-entropy loss.
By jointly optimizing the choice of hard negatives
and architectures, we have obtained new state-of-
the-art results on the challenging Zeshel dataset
(Logeswaran et al., 2019).
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A Percentage of Hard Negatives

We show top-64 validation recalls with varying
values of the hard negative percentage p in training
below:

Mixed-p (%) DUAL MULTI-8 SOM

0 (Random) 91.08 91.13 92.51
25 92.18 92.74 94.13
50 91.75 92.76 94.66
75 92.24 93.41 94.37
100 (Hard) 92.05 93.27 94.54

The presence of hard negatives is clearly helpful,
but the exact choice of p > 0 is not as important.
We choose p = 50 because we find that the pres-
ence of some random negatives often gives slight
yet consistent improvement.

B Reranking Experiments

We show the normalized and unnormalized accu-
racy of a reranker as we change the architecture
while holding the retriever fixed:

Model Normalized Unnormalized
Val Test Val Test

DUAL 60.43 62.49 54.87 54.73
POLY-16 60.37 60.98 54.82 53.37
POLY-64 60.80 61.88 55.20 54.15
POLY-128 60.60 62.72 55.03 54.92
MULTI-8 61.56 62.65 55.90 54.87
MULTI-64 61.94 62.94 56.23 55.15
MULTI-128 61.67 62.95 55.98 55.17
SOM 65.38 65.24 59.35 57.04
GENPOLY-128 65.89 64.98 59.82 56.82
JOINT 76.17 74.90 69.14 65.42
Logeswaran et al. 76.06 75.06 – 55.08
Wu et al. 78.24 76.58 – –
JOINT (ours) 78.82 77.09 58.77 56.56

GENPOLY-m denotes a generalized version of
the poly-encoder in which we use m leftmost
entity embeddings rather than one: sθ(x, y) =
1>mF1:m(y)>Cm(x, y). We use a trained dual en-
coder with 91.93% and 83.48% validation/test re-
calls as a fixed retriever. The accuracy increases
with the complexity of the reranker. The dual en-
coder and the poly-encoder are comparable, but the
multi-vector, the sum-of-max, and the generalized
poly-encoder achieve substantially higher accura-
cies. Not surprisingly, the joint encoder achieves
the best performance. We additionally show rerank-
ing results using the BM25 candidates provided in
the Zeshel dataset for comparison with existing
results. Our implementation of JOINT with BERT-
base obtains comparable accuracies.

C Bias Experiments on Zeshel

We consider the dual encoder sθ(x, y) =
E1(x)>F1(y) where E and F are parameterized
by BERT-bases. We randomly sample 64 mentions,
yielding a total of 128 entities: 64 referenced by
the mentions, and 64 whose descriptions contain
these mentions. We consider these 128 entities to
constitute the entirety of the label space Y . On the
64 mentions, we estimate JCE(θ) by normalizing
over the 128 entities; we estimate JHARD(θ) by nor-
malizing overK = 8 candidates where 7 are drawn
from a negative distribution: either random, hard,
or mixed. Instead of a single-sample estimate as
in (11), we draw negative examples 500 times and
average the result. We estimate the bias b(θ) ∈ Rd
by taking a difference between these two estimates
and report the norm below:
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Negatives ‖b(θCE)‖ ‖b(θRAND)‖
Random 16.33 166.38
Hard 0.68 0.09
Mixed-50 1.20 0.90

We consider two parameter locations. θCE is
obtained by minimizing the cross-entropy loss
(92.19% accuracy). θRAND is obtained by NCE with
random negatives (60% accuracy). The bias is dras-
tically smaller when negative examples are drawn
from the model instead of randomly. Mixed nega-
tives yield comparably small biases. With random
negatives, the bias is much larger at θRAND since
∇JCE(θRAND) is large. In contrast, hard and mixed
negatives again yield small biases.


