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Motivation: word2vec as Matrix Decomposition

I word2vec (Mikolov et al., 2013) trains word/context

embeddings by maximizing some objective:

(vw, vc) = arg max
u,v

J(u, v)

I Recently cast as a low-rank decomposition of transformed

co-occurrence counts (Levy and Goldberg, 2014):

v>wvc = f (count(w, c))

I Q. Are there other count transformations whose low-rank
decompositions yield effective word embeddings?



This Work

1. Count transformation under canonical correlation analysis
(CCA) (Hotelling, 1936)

I Model-based interpretation that permits a variance-stabilizing
transformation

2. Unifies a number of existing spectral methods for inducing
word embeddings

3. Empirically competitive with other popular methods such as
word2vec and glove
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Correlation Coefficient

I Correlation coefficient between random variables X,Y ∈ R:

Cor(X,Y ) :=
E[XY ]− E[X]E[Y ]√

(E[X2]− E[X]2)× (E[Y 2]− E[Y ]2)

Degree of linear relationship [−1, 1]

X

Y

Cor(X, Y ) ≈ 1



Optimization Problem Underlying CCA
Input:

1. (X,Y ) ∈ Rd × Rd′ // two “views” of an object

2. m ≤ min(d, d′) // number of projection vectors

Output: (a1, b1) . . . (am, bm) ∈ Rd × Rd′ such that

I (a1, b1) is the solution of

arg max
a,b

Cor
(
a>X, b>Y

)
(1)

I For i = 2 . . .m : (ai, bi) is the solution of (1) subject to:

Cor
(
a>X, a>j X

)
= 0 ∀j < i

Cor
(
b>Y, b>j Y

)
= 0 ∀j < i



Exact Solution via Singular Value Decomposition (SVD)

Theorem. (Hotelling, 1936) Define correlation matrix Ω ∈ Rd×d′ :

Ω :=
(
E[XX>]− E[X]E[X]>

)−1/2(
E[XY >]− E[X]E[Y ]>

)(
E[Y Y >]− E[Y ]E[Y ]>

)−1/2

Let (ui, vi) be the left/right singular vectors of Ω corresponding

to the i-th largest singular value. Then

ai =
(
E[XX>]− E[X]E[X]>

)−1/2
ui

bi =
(
E[Y Y >]− E[Y ]E[Y ]>

)−1/2
vi



New Representation under CCA

I Induce new m-dimensional representation (X,Y ) of (X,Y ):

X i = a>i X

Y i = b>i Y

for i = 1 . . .m

I Idea: remove ambient dimensions by projecting to a subspace
containing most correlation
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Two Views of a Word: Word & Context

Extract samples of (X,Y ) := (word, context) from a corpus:

. . . Whatever our souls are made of . . .

↓
(Isouls, Iour) (Isouls, Iare)

where Ii is an indicator vector for i

Need to perform singular value decomposition (SVD) on

Ω̂ =
(

Ê[XX>]− Ê[X]Ê[X]>
)−1/2

(
Ê[XY >]− Ê[X]Ê[Y ]>

)
(

Ê[Y Y >]− Ê[Y ]Ê[Y ]>
)−1/2



Simplified Correlation Matrix

When the number of samples is large, the means tend to zero:

Ω̂ ≈ Ê
[
XX>

]−1/2
Ê
[
XY >

]
Ê
[
Y Y >

]−1/2

I.e., decompose the following transformed counts!

Ω̂w,c =
count(w, c)√

count(w)× count(c)



Previous Work Using CCA for Word Embeddings

I Dhillon et al. (2011, 2012) propose various modifications of

CCA, but take the square root of counts,

Ω̂w,c =
count(w, c)1/2√

count(w)1/2 × count(c)1/2

I The square root was taken for empirical reasons.

I We now provide a model-based interpretation that naturally
admits this extra transformation.
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Definition of the “Brown Model” (Brown et al., 1992)

Parameters: same as HMMs

π(h) = probability of state h starting a sequence

t(h′|h) = probability of transitioning from state h to state h′

o(w|h) = probability of word w under state h

Assumption: every word w has a single possible state h

I Define emission matrix O where Ow,h = o(w|h)

I Rows of O can be seen as state-revealing word embeddings

Osmile =
[
0.3 0.0

]
Ofrown =

[
0.0 0.25

]
Ogrin =

[
0.7 0.0

]
Ocringe =

[
0.0 0.75

]



Using the Scaled, Rotated Rows of O as Word Embeddings

Suppose we had O := diag(s1)O
〈a〉diag(s2)Q

> where

I s1 and s2 are any positive vectors

I O〈a〉 is an element-wise power of O with any a 6= 0

I Q is any orthogonal matrix

Normalized rows of O have the same representational power as
normalized rows of O!

smile

grin

frown

cringe

⇒

smile

grin

frown

cringe



CCA for Estimating O up to Scaling and Rotation

Theorem. Pick any a 6= 0. Let Û be the top m left singular

vectors of Ω̂〈a〉 where

Ω̂〈a〉w,c =
count(w, c)a√

count(w)a × count(c)a

Then as the sample size grows:

Û → O〈a/2〉diag(s)Q>

for some s > 0 and orthogonal Q

Proof. Extension of Stratos et al. (2014)



Choosing the Value of a

So we can choose any a 6= 0, what should it be?

One answer: a = 1/2

Why?

I Assume word counts drawn from a multinomial distribution

I Equivalent to drawing from independent Poisson distributions
(conditioned on the length of the corpus)

I Square-root is a variance-stabilizing transformation for
Poisson random variables (Bartlett, 1936):

X ∼ Poisson(np)

Var(X1/2)→ 1/4 as n→∞



Why does Variance Stabilization Help?

SVD minimizes unweighted squared-error loss:

min
uw,vc

∑
w,c

(
Ω〈a〉w,c − u>wvc

)2
But minimizing variance-weighted squared-error loss is more
statistically efficient (Aitken, 1936):

min
uw,vc

∑
w,c

1

Var
(

Ω
〈a〉
w,c

) (Ω〈a〉w,c − u>wvc
)2

Generally intractable (Srebro et al., 2003)

Using a = 1/2 makes Var
(

Ω
〈a〉
w,c

)
approximately constant and

removes the need for explicit variance weighting!
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Template
Input: count(w, c), dimension m, transform t, scaling s

I count(w) :=
∑

c count(w, c)

I count(c) :=
∑

w count(w, c)

Output: embedding v(w) ∈ Rm for each word w

1. Transform counts

2. Scale counts to construct matrix Ω̂

3. Do rank-m SVD on Ω̂ ≈ Û Σ̂V̂ > and let v(w) = Ûw/
∣∣∣∣∣∣Ûw

∣∣∣∣∣∣



Template: No Scaling (Pennington et al., 2014)

Input: count(w, c), dimension m, t = log, s = —

I count(w) :=
∑

c count(w, c)

I count(c) :=
∑

w count(w, c)

Output: embedding v(w) ∈ Rm for each word w

1. Transform counts

count(w, c)← log(1 + count(w, c))

2. Scale counts to construct matrix Ω̂

Ω̂w,c = count(w, c)

3. Do rank-m SVD on Ω̂ ≈ Û Σ̂V̂ > and let v(w) = Ûw/
∣∣∣∣∣∣Ûw

∣∣∣∣∣∣



Template: PPMI (Levy and Goldberg, 2014)

Input: count(w, c), dimension m, t = —, s = ppmi

I count(w) :=
∑

c count(w, c)

I count(c) :=
∑

w count(w, c)

Output: embedding v(w) ∈ Rm for each word w

1. Transform counts

count(w, c)← count(w, c) count(w)← count(w)

count(c)← count(c)

2. Scale counts to construct matrix Ω̂

Ω̂w,c = max

(
0, log

count(w, c)×
∑

w,c count(w, c)

count(w)× count(c)

)
3. Do rank-m SVD on Ω̂ ≈ Û Σ̂V̂ > and let v(w) = Ûw/

∣∣∣∣∣∣Ûw

∣∣∣∣∣∣



Template: CCA (Stratos et al., 2014)

Input: count(w, c), dimension m, t = —, s = cca

I count(w) :=
∑

c count(w, c)

I count(c) :=
∑

w count(w, c)

Output: embedding v(w) ∈ Rm for each word w

1. Transform counts

count(w, c)← count(w, c) count(w)← count(w)

count(c)← count(c)

2. Scale counts to construct matrix Ω̂

Ω̂w,c =
count(w, c)√

count(w)× count(c)

3. Do rank-m SVD on Ω̂ ≈ Û Σ̂V̂ > and let v(w) = Ûw/
∣∣∣∣∣∣Ûw

∣∣∣∣∣∣



Template: CCA with Square-Root (this work)

Input: count(w, c), dimension m, t = sqrt, s = cca

I count(w) :=
∑

c count(w, c)
I count(c) :=

∑
w count(w, c)

Output: embedding v(w) ∈ Rm for each word w

1. Transform counts

count(w, c)←
√

count(w, c) count(w)←
√

count(w)

count(c)←
√

count(c)

2. Scale counts to construct matrix Ω̂

Ω̂w,c =
count(w, c)√

count(w)× count(c)

3. Do rank-m SVD on Ω̂ ≈ Û Σ̂V̂ > and let v(w) = Ûw/
∣∣∣∣∣∣Ûw

∣∣∣∣∣∣
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Setting

Corpus: pre-processed English Wikipedia (1.4 billion words)

Evalution
I Word similarity: correlation with human judgment on ranking

similar words, averaged across 3 datasets (AVG-SIM)

I Word analogy: answering analogy questions of form

Beijing : China ∼ Kampala : ?

Syntactic (SYN), syntactic+semantic (MIXED)

I Semi-supervised learning: improving performance of supervised
learner

Comparison with glove (Pennington et al., 2014) and cbow,
sgns (implemented in word2vec) (Mikolov et al., 2013)

I Default hyperparameter configuration



Effect of Power Transformation in CCA

Different values of a in

Ω̂〈a〉w,c =
count(w, c)a√

count(w)a × count(c)a

1000 dimensions

a AVG-SIM SYN MIXED

1 0.572 39.68 57.64
2/3 0.650 60.52 74.00
1/2 0.690 65.14 77.70



Word Similarity and Analogy

I log: log transform, no scaling

I ppmi: no transform, PPMI scaling

I cca: square-root transform, CCA scaling

500 dimensions

Method AVG-SIM SYN MIXED

Spectral log 0.652 59.52 67.27
ppmi 0.628 43.81 58.38
cca 0.655 68.38 74.17

Others glove 0.576 68.30 78.08
cbow 0.597 75.79 73.60
sgns 0.642 81.08 78.73



Semi-Supervised Learning

I Features in named-entity recognition (CoNLL 2003)

I RCV1 corpus (205 million words)

30 dimensions

Features Dev Test

— 90.04 84.40
brown 92.49 88.75

log 92.27 88.87
ppmi 92.25 89.27
cca 92.88 89.28

glove 91.49 87.16
cbow 92.44 88.34
sgns 92.63 88.78

(brown: 1000 Brown clusters (Brown et al., 1992))



Summary

We developed a new statistical understanding of word
embeddings based on transformed counts

I CCA transformations: recovery of Brown model

Unified many spectral word embedding methods

Future work includes:
I Applying square-root in other SVD applications
I Relaxing Brown model assumption


