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Latent-Variable Models for NLP and Speech

» Latent-variable models are of huge importance.
» Speech recognition with HMMs
» Gaussian mixture models
» Machine translation with alignments as hidden variables
» Latent-variable PCFGs (Matsuzaki et al., Petrov et al.)
» Many many others

» The EM algorithm is remarkably successful. But:
» No guarantee of reaching the global maximum of the likelihood

function

» Theoretical problem: parameter estimates not consistent
» Practical problems: local optima difficult to deal with



There

is Hope

Dasgupta (1999): Under separation conditions, it is possible
to learn GMMs.

Moitra and Valiant (2010): Arbitrary GMMs can be learned in
polynomial time and sample complexity.

Hsu, Kakade, and Zhang (2009): Under rank conditions, it is
possible to learn HMMs efficiently and consistently.
Kakade and Foster (2007): Under a wide class of models,

CCA projections yield an optimal space for predicting hidden
variables.



This Work

> A spectral algorithm for learning latent-variable PCFGs
L-PCFGs: Strong parsing performance (Petrov et al., 2006)

» Guaranteed to give consistent parameter estimates under
assumptions on singular values

» Simple and efficient (SVD and matrix operations)



Overview

L-PCFGs

The Spectral Algorithm for Parameter Estimation

Calculating Parameter Estimates
SVD and Projection

Justification



L-PCFGs (Matsuzaki et al., 2005, Petrov et al., 2006)
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Marginals of a Sentence

» Given a sentence x, a marginal is defined as

wa i)=Y, b
ter(x):(a,ij)Et
for all (a,i,/) tuples.

» These marginals can be computed using a variant of the
inside-outside algorithm.

» A dynamic programming algorithm (Goodman, 1996) can be
used to find the optimal parse defined as

t* = arg max a,i,j
g max E ' (a,i,j)
(aij)et



Parameter Estimation

» So this is a parameter estimation problem.
» Given only skeletal trees, can we estimate 7, t and g7
» Past work used EM (Matsuzaki et al., 2005, Petrov et al. 2006).

» No guarantee of converging to the correct distribution
» Prone to local optima
» We present a spectral estimation method.
» Under assumptions on singular values, gives consistent
parameter estimates
» Relatively simple, efficient
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Inside and Outside Trees

At node VP:
Outside tree 0 = s
S PN
NP VP
/\ Pl
D N
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the dog
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saw him

Conditionally independent given the label and the hidden state

p(o, t]VP, h) = p(o|VP, h) x p(t|VP, h)



Vector Representation of Inside and Outside Trees

Assume functions Z and Y:
Z maps any outside tree to a vector of length m.

Y maps any inside tree to a vector of length m.

Convention: m is the number of hidden states under the L-PCFG.
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Outside tree 0 = Inside tree t =

Z(o)=1[1,0.4,-53,...,72] € R™ Y(t) =[-3,17,2,...,3.5] € R™



Parameter Estimation for Binary Rules

Take M samples of nodes with rule VP — V NP.

At sample j

» o) = outside tree at VP

> tg) = inside tree at V

> tgi) = inside tree at NP
F(VP™ — VP2 NP3 vPM)

_ count(VP =V NP)
B count(VP)

oL
M <
i=1
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Parameter Estimation for Unary Rules

Take M samples of nodes with rule N — dog

At sample i

» o) = outside tree at N

t(N —)dog)
N = dog|N/) = 24
a( og|N") = count(N

M
MZ Z,(oM)

u}

DA



Parameter Estimation for the Root

Take M samples of the root S.

S

At sample i

» t() = inside tree at S

#(SM

_ count(root=S

count(root)
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Calculating Tree Probability with Dynamic Programming:
Revisited

b =) #NP" — D" N™|NP") x §(D" — the|D™) x §(N" — dog|N™)

ha,hs

B2 =Y HVP" V™ P"|VP") x g(V" - saw|V") x §(P" — him|P")
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p(tree) = Zfr(Sh) x b}
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Deriving Z and Y

Design functions 1) and ¢:

1) maps any outside tree to a vector of length d’

¢ maps any inside tree to a vector of length d
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/\
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Outside tree 0 =
¥(0) =10,1,0,0,...,0,1] € RY

Inside tree t =
#(t) =[1,0,0,0,...,1,0] € RY

Z and Y will be reduced dimensional representations of ¢ and ¢.



Reducing Dimensions via a Singular Value Decomposition

Have M samples of a node with non-terminal a. At sample i, o() is
the outside tree rooted at a and t(7) is the inside tree rooted at a.

» Compute a matrix Q7 € RI%9" with entries

M
LR ST
i=1
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Reducing Dimensions via a Singular Value Decomposition

Have M samples of a node with non-terminal a. At sample i, o() is
the outside tree rooted at a and t(7) is the inside tree rooted at a.

» Compute a matrix Q7 € RI%9" with entries
1Y , .
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» An SVD:
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» Projection:

mxd dx1
Z(o) = (£9) 71 (V)T yp(o)) e R™
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Consistency and Sample Complexity

If the d x d’ matrix
Q% = E[¢(T)y(0) " |label = 3]

has rank m, these projections yield consistent parameter estimates
with high probability. The required number of samples grows
polynomially in

» m: the number of hidden states

> log R: where R is the number of rules

» Spectral properties of the grammar (e.g., max% where o9 is
the m largest singular value of Q?)



A Summary of the Algorithm

1. Design feature functions ¢ and v for inside and outside trees.
2. Use SVD to compute vectors

Y(t) € R™ for inside trees
Z(0) € R™ for outside trees

3. Estimate the parameters , §, and # from the training data.

4. Parse a new sentence by computing its marginals with these
parameters.
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Tensor Definition

A third-order tensor C € R™<™*™ is a set of m> values [C]; . It can be
viewed as a function C : R™ x R™ — R™ that takes two vectors

y1,y2 € R™ as input and returns a vector C(y1,y2) € R™ as output. The
output vector has entries

[Conylh=Y ([qh,hm < il [y21h3)

ha,h3

y, C.Y.)




Tensor Form of the Parameters

For each non-terminal a, define a vector m@ € R™ with entries
[7°]s = m(a")
For each rule a — x, define a vector g,_,x € R™ with entries

[qa—>x]h = qa—>x(ah — X|ah)

For each rule a — b c, define a tensor T27b ¢ ¢ RM*XmMXm \with entries

[Ta_>b C]hl,hQ,hs = t(ah1 — bhz Ch3|ahl)



Dynamic Programming in Tensor Form
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Thought Experiment

» We want the parameters (in tensor form)
m? e R™

Ga—sx € R™

Ta—)b C(y27y3) cRM

» What if we had an invertible matrix G2 € R™*™ for every
non-terminal a?

» And what if we had instead
Ca — Gaﬂ_a
Casx = qa—>x(Ga)7
Co7P(yn,y3) = TP (12GP, y3G°)(G?)

1



Cancellation of the Linear Operators
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Estimation Guarantees

~

» Basic argument: If Q2 has rank m, parameters C?7b¢ &, .,
and ¢&? converge to

CT7P(yn,y3) = T2 (32 GP, y3G)(G) !

Casx = qa%x(Ga)_l
= Gin?

for some G? that is invertible.

» Because the parameters converge, the estimated distribution
p(tree) converges to the true distribution p(tree), and the
estimated marginal fi(a, i,j) converges to the true marginal

w(a, i, j).



Preliminary Experiments

The algorithm is much faster than EM.
» SVD: modern algorithms are very efficient

» Parameter calculation: takes less time than a single iteration
of EM

A straightforward implementation lags behind EM by about 1-2%
in F1 measure.

Current work: experiments focused on understanding the method
and improving performance



Summary

We presented a spectral algorithm that yields a consistent
estimator for L-PCFGs

» Simple and efficient: SVD and standard matrix operations

Future work includes
> Pushing the empirical side of the algorithm

» Deriving spectral algorithms for other latent-variable models
in NLP
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