COMS 4705.H: Language Models

Karl Stratos

January 27, 2017

1/30

Motivation
How likely are the following sentences?

» the dog barked

» the cat barked

» dog the barked

» oqc shgwqu#w 1g0

2/30

Motivation
How likely are the following sentences?

» the dog barked

» the cat barked

» dog the barked

» oqc shgwqu#w 1g0

“probability 0.1"

“probability 0.03"

“probability 0.00005"

“probability 10713"

2/30

Language Model: Definition

A language model is a function that defines a probability
distribution p(xj ...x,,) over all sentences z7 ... Zy,.

Goal: Design a good language model, in particular

p(the dog barked) > p(the cat barked)
> p(dog the barked)
> p(oqc shgwqu#w 1g0)

3/30

Overview

The Probability of a Sentence

The n-Gram Language Models

Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

4 /30

Problem Statement

v

We'll assume a finite vocabulary V' (i.e., the set of all
possible word types).

v

Sample space: Q@ ={z1...xp € V™ : m>1}

» Task: Design a function p over €2 such that
p(xy...xp) >0 VIi... %y € Q
Z p(r1...xm) =1
T1...TmEN

v

What are some challenges?

5/30

Challenge 1: Infinitely Many Sentences

» Can we “break up” the probability of a sentence into
probabilities of individual words?

> Yes: Assume a generative process.

» We may assume that each sentence z; ...x,, is generated as
(1) @y is drawn from p(-),
(2) z2 is drawn from p(-|x1),
(3) x5 is drawn from p(-|x1, z2),

(m) @, is drawn from p(:|z1,...,Zm—1),

(m+1) T4 is drawn from p(-|z1, ..., 2Tm).
where x,,+1 = STOP is a special token at the end of every
sentence.

6 /30

Justification of the Generative Assumption

By the chain rule,

p(x1 ... 2y STOP) = p(z1) X p(w2|z1) X p(as|xy, x2) X - -
X p(xm|T1, ..y Tm—1) X p(STOP|z1, ..., Ty)

Thus we have solved the first challenge.
» Sample space = finite V

» The model still defines a proper distribution over all sentences.

(Does the generative process need to be left-to-right?)

7/30

Challenge 2: Infinitely Many Distributions

Under the generative process, we need infinitely many conditional
word distributions:

p(z1) Ve, eV

p(xa|x1) Vri,29 €V
p(xs|z1, z2) Vi, e, 23 €V
p(zyg|x1, 2, T3) Vi, r0,23,24 €V

Now our goal is to redesign the model to have only a finite,
compact set of associated values.

8 /30

Overview

The Probability of a Sentence

The n-Gram Language Models

Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

9/30

Independence Assumptions
X is independent of Y if

P X =z|Y =y) = P(X =x)

X is conditionally independent of Y given 7 if

PX=x|Y =y, Z=2)=PX=z|Z=2

Can you think of such X,Y, 27

10 /30

Unigram Language Model

Assumption. A word is independent of all previous words:

p({L‘Z“J}l e xi—l) = p(xz)

That is,

Number of parameters: O(|V])

Not a very good language model:

p(the dog barked) = p(dog the barked)

11/30

Bigram Language Model

Assumption. A word is independent of all previous words con-
ditioning on the preceding word:

p(xi\ml Ce mi—l) = p(mi\xi_l)

That is,

p(x1. . Ty) = Hp(xzm—ﬁ

where x(y = * is a special token at the start of every sentence.

Number of parameters: O(|V[?)

12 /30

Trigram Language Model

Assumption. A word is independent of all previous words con-
ditioning on the two preceding words:

p($i|5€1 .- -SCz'—l) = p(wi\ﬂfi—% xi—l)

That is,
m
pley. . an) = | | p(@ilzios, 2i0)
1=1
where x_1,xg = * are special tokens at the start of every

sentence.

Number of parameters: O(|V|*)
13/30

The n-Gram Language Model

Assumption. A word is independent of all previous words con-
ditioning on the n — 1 preceding words:

p(ﬂfi|$1 ce. $i—1) = P($i!$i—n+1a e 7332'—1)

Number of parameters: O(|V|")

This kind of conditional independence assumption (“depends only
on the last n — 1 states...”) is called a Markov assumption.

> Is this a reasonable assumption for language modeling?

14 /30

Overview

The Probability of a Sentence

The n-Gram Language Models

Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

15 /30

A Practical Question

» Summary so far: We have designed probabilistic language
models parametrized by finitely many values.
» Bigram model: Stores a table of O(|V|?) values
q(2|z) Vz,2' €V

(plus g(x|*) and ¢(STOP|x)) representing transition
probabilities and computes

p(the cat barked) =¢(the|*)x

g(barked|cat)

(
g(cat|the)x

(
q(STOP|barked)

» Q. But where do we get these values?

16 /30

Estimation from Data

» Our data is a corpus of N sentences z(1) ... z(N).

» Define count(z, z’) to be the number of times z, 2’ appear
together (called “bigram counts”):

N
count(z, a: Z 1

(1; = length of (¥ and x;, 1 = STOP)

» Define count(z) := 3", count(z,z’) (called “unigram
counts”).

17 /30

Example Counts

Corpus:
» the dog chased the cat
» the cat chased the mouse

» the mouse chased the dog

Example bigram/unigram counts:

count(zg, the

count(the

Il
N W W o

count(chased, the
count(the, dog
count(cat, STOP

count(xg

3

=3 count(chased
2
1

)
)
)
)

~— — — ~—

count(cat

18 /30

Parameter Estimates

» For all z, 2’ with count(z,2’) > 0, set
count(zx, ')
count(z)

q(z'|x) =
Otherwise ¢(z'|x) = 0.

> In the previous example:

q(the|zg) =3/3 =1
q(chased|dog) =1/3 =0.3
q(dog|the) = 2/6 = 0.3
q(STOP|cat) =1/2=10.5
q(dog|cat) =0

» Called maximum likelihood estimation (MLE).

19/30

Justification of MLE

Claim. The solution of the constrained optimization problem
N lLi+1
q = arg max Z Z log q(xj|zj-1)
¢ q(a'|2) 20 Va,2' Ty T
>arey q(|)=1Vz
is given by

count(x, 2’)

¢ (@'lz) = count(z)

(Proof?)

20 /30

MLE: Other n-Gram Models

Unigram:
count(z)
Bigram:
count(z, 2’
ola!|) = S, 2)
count(z)
Trigram:
o2z, 2) = count(x, z’, x")

count(x, ')
21 /30

Overview

The Probability of a Sentence

The n-Gram Language Models

Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

22 /30

Evaluation of a Language Model

“How good is the model at predicting unseen sentences?”

Held-out corpus: Used for evaluation purposes only

» One metric: log likelihood of unseen sentences y() ... y(™)

T
LL = "logp(y")
i=1
» More popular metric: perplexity of the model:
1 T j
PP — 917 2i-1logp(y")

where M is the number of words + STOP symbols

23 /30

Motivation of Perplexity: The Branching Factor

» How many times do we expect to flip a coin until we get a
head, if it comes up head with probability €?

> 1/e times
» Mean of the geometric distribution with parameter €

» Examples

» ¢ = 0.5: expect to flip two times
» ¢ = 0.1: expect to flip ten times
» ¢ = 0.001: expect to flip a thousand times

» The higher the "branching factor” 1/e is, the more
“surprised” the model.

24 /30

The Branching Factor of Language Models

» For simplicity, assume a single sentence ¥y = 41 ...yy—1 STOP.

» The branching factor of the model at word y;:

1
PWilyr - - yi-1)

» Geometric average of the branching factors:

1

f[l (p(yilyl 1 -%—1)) M

25 /30

Perplexity = Average Branching Factor

1
1

i —_
ﬁ((1))M:ﬁQIOg(W)M
P\Yi Y

=1 11

26 /30

Perplexity = Average Branching Factor

1

M L M og)W
Py [y1-¥i—1)
H(yz\yl Yi-1)) H2 py e

=1 1=

M
H2 a7 logp(yily1--.yi—1)
=1

sy

.

26 /30

Perplexity = Average Branching Factor

1
M

S

I
.:E

s
Il
—

log<m)

2

ﬁ((yily - - yi_1)>

— 2 log p(yily1--yi—1)

Il
.:E

-
I
—

M log p(yily1-yi-1)

I
N
2

26 /30

Perplexity = Average Branching Factor

a1
210g<m) "

g~

I
.:E

s
Il
—

ﬁ((yily - - yi_1)>

—ﬁ log p(yily1...yi—1)

Il
.:E

-
I
—

= Q_ﬁ M log p(yily1-yi-1)

= 2_7lOgHz lp(yllyl Yi—)

26 /30

Perplexity = Average Branching Factor

a1
210g<m) "

S

I
.:E

s
Il
—

ﬁ((yily - - yi—1)>

=1

— a7 log p(yily1.-yi—1)

Il
.:E

=1
= Q_ﬁ M log p(yily1-yi-1)
= Q_ﬁ log T, p(yily1--yi-1)
— 97 logp(y)

26 /30

Perplexity = Average Branching Factor

1
M

S

I
.:E

s
Il
—

log<m)

2

ﬁ((yily - - yi_1)>

— a7 log p(yily1.-yi—1)

Il
.:E

-
I
—

977 Lity log p(yily1---yi—1)

-4 7 log I, p(yilyr-vi-1)

|
Do

— 9 47 log p(y)
PP

26 /30

Example Perplexity Values

» If the model perfectly predicts test sentence,

PP — Q*ﬁlogl_[?; p(Yilyr-yi-1) — Q*ﬁlogl =1

» If the model predicts words uniformly at random,

PP = 2~ Ll logpWilyivi-1) — 9= 37 il log /IVI — |/

» Empirical values for |V| = 50,000 (Goodman, 2001)
» Unigram: 955, Bigram: 137, Trigram: 74

27 /30

Overview

The Probability of a Sentence

The n-Gram Language Models

Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

28 /30

Smoothing

In practice, it's important to smooth estimation of higher-order
models:

qsmoothed(x//|x7 ZU/) :>\1q($”|£13, ZL’I)—F
)\QQ(ZU”|33/)—|—
Asq(x")

where A1 + Ao + A3 = 1 and \; > 0. Called linear interpolation.

29 /30

Discount Methods

At test time, how do we handle words that were unobserved in
the training corpus?

> Naively, we assign probability 0 to the entire held-out data!

A solution: “steal” some probability mass from observed words and
allocate it for unobserved words.

Called discount methods. Will cover more details in video
lectures / textbook.

30/30

