
COMS 4705.H: Language Models

Karl Stratos

January 27, 2017

1 / 30



Motivation
How likely are the following sentences?

I the dog barked

I the cat barked

I dog the barked

I oqc shgwqw#w 1g0

2 / 30



Motivation
How likely are the following sentences?

I the dog barked

“probability 0.1”

I the cat barked

“probability 0.03”

I dog the barked

“probability 0.00005”

I oqc shgwqw#w 1g0

“probability 10−13”

2 / 30



Language Model: Definition

A language model is a function that defines a probability
distribution p(x1 . . . xm) over all sentences x1 . . . xm.

Goal: Design a good language model, in particular

p(the dog barked) > p(the cat barked)

> p(dog the barked)

> p(oqc shgwqw#w 1g0)

3 / 30



Overview

The Probability of a Sentence

The n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

4 / 30



Problem Statement

I We’ll assume a finite vocabulary V (i.e., the set of all
possible word types).

I Sample space: Ω = {x1 . . . xm ∈ V m : m ≥ 1}

I Task: Design a function p over Ω such that

p(x1 . . . xm) ≥ 0 ∀x1 . . . xm ∈ Ω∑
x1...xm∈Ω

p(x1 . . . xm) = 1

I What are some challenges?

5 / 30



Challenge 1: Infinitely Many Sentences

I Can we “break up” the probability of a sentence into
probabilities of individual words?

I Yes: Assume a generative process.

I We may assume that each sentence x1 . . . xm is generated as

(1) x1 is drawn from p(·),
(2) x2 is drawn from p(·|x1),
(3) x3 is drawn from p(·|x1, x2),

. . .
(m) xm is drawn from p(·|x1, . . . , xm−1),

(m+ 1) xm+1 is drawn from p(·|x1, . . . , xm).

where xm+1 = STOP is a special token at the end of every
sentence.

6 / 30



Justification of the Generative Assumption

By the chain rule,

p(x1 . . . xm STOP) = p(x1)× p(x2|x1)× p(x3|x1, x2)× · · ·
· · · × p(xm|x1, . . . , xm−1)× p(STOP|x1, . . . , xm)

Thus we have solved the first challenge.

I Sample space = finite V

I The model still defines a proper distribution over all sentences.

(Does the generative process need to be left-to-right?)

7 / 30



Challenge 2: Infinitely Many Distributions

Under the generative process, we need infinitely many conditional
word distributions:

p(x1) ∀x1 ∈ V
p(x2|x1) ∀x1, x2 ∈ V

p(x3|x1, x2) ∀x1, x2, x3 ∈ V
p(x4|x1, x2, x3) ∀x1, x2, x3, x4 ∈ V

...
...

Now our goal is to redesign the model to have only a finite,
compact set of associated values.

8 / 30



Overview

The Probability of a Sentence

The n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

9 / 30



Independence Assumptions

X is independent of Y if

P (X = x|Y = y) = P (X = x)

X is conditionally independent of Y given Z if

P (X = x|Y = y, Z = z) = P (X = x|Z = z)

Can you think of such X,Y, Z?

10 / 30



Unigram Language Model

Assumption. A word is independent of all previous words:

p(xi|x1 . . . xi−1) = p(xi)

That is,

p(x1 . . . xm) =
m∏
i=1

p(xi)

Number of parameters: O(|V |)

Not a very good language model:

p(the dog barked) = p(dog the barked)

11 / 30



Bigram Language Model

Assumption. A word is independent of all previous words con-
ditioning on the preceding word:

p(xi|x1 . . . xi−1) = p(xi|xi−1)

That is,

p(x1 . . . xm) =
m∏
i=1

p(xi|xi−1)

where x0 = * is a special token at the start of every sentence.

Number of parameters: O(|V |2)

12 / 30



Trigram Language Model

Assumption. A word is independent of all previous words con-
ditioning on the two preceding words:

p(xi|x1 . . . xi−1) = p(xi|xi−2, xi−1)

That is,

p(x1 . . . xm) =

m∏
i=1

p(xi|xi−2, xi−1)

where x−1, x0 = * are special tokens at the start of every
sentence.

Number of parameters: O(|V |3)

13 / 30



The n-Gram Language Model

Assumption. A word is independent of all previous words con-
ditioning on the n− 1 preceding words:

p(xi|x1 . . . xi−1) = p(xi|xi−n+1, . . . , xi−1)

Number of parameters: O(|V |n)

This kind of conditional independence assumption (“depends only
on the last n− 1 states. . . ”) is called a Markov assumption.

I Is this a reasonable assumption for language modeling?

14 / 30



Overview

The Probability of a Sentence

The n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

15 / 30



A Practical Question

I Summary so far: We have designed probabilistic language
models parametrized by finitely many values.

I Bigram model: Stores a table of O(|V |2) values

q(x′|x) ∀x, x′ ∈ V

(plus q(x|*) and q(STOP|x)) representing transition
probabilities and computes

p(the cat barked) =q(the|*)×
q(cat|the)×
q(barked|cat)

q(STOP|barked)

I Q. But where do we get these values?

16 / 30



Estimation from Data

I Our data is a corpus of N sentences x(1) . . . x(N).

I Define count(x, x′) to be the number of times x, x′ appear
together (called “bigram counts”):

count(x, x′) =

N∑
i=1

li+1∑
j=1:
xj=x′
xj−1=x

1

(li = length of x(i) and xli+1 = STOP)

I Define count(x) :=
∑

x′ count(x, x′) (called “unigram
counts”).

17 / 30



Example Counts

Corpus:

I the dog chased the cat

I the cat chased the mouse

I the mouse chased the dog

Example bigram/unigram counts:

count(x0, the) = 3 count(the) = 6

count(chased, the) = 3 count(chased) = 3

count(the, dog) = 2 count(x0) = 3

count(cat, STOP) = 1 count(cat) = 2

18 / 30



Parameter Estimates

I For all x, x′ with count(x, x′) > 0, set

q(x′|x) = count(x, x′)

count(x)
Otherwise q(x′|x) = 0.

I In the previous example:

q(the|x0) = 3/3 = 1

q(chased|dog) = 1/3 = 0.3̄

q(dog|the) = 2/6 = 0.3̄

q(STOP|cat) = 1/2 = 0.5

q(dog|cat) = 0

I Called maximum likelihood estimation (MLE).
19 / 30



Justification of MLE

Claim. The solution of the constrained optimization problem

q∗ = arg max
q: q(x′|x)≥0 ∀x,x′∑
x′∈V q(x′|x)=1∀x

N∑
i=1

li+1∑
j=1

log q(xj |xj−1)

is given by

q∗(x′|x) =
count(x, x′)

count(x)

(Proof?)

20 / 30



MLE: Other n-Gram Models

Unigram:

q(x) =
count(x)

N

Bigram:

q(x′|x) = count(x, x′)

count(x)

Trigram:

q(x′′|x, x′) = count(x, x′, x′′)

count(x, x′)

21 / 30



Overview

The Probability of a Sentence

The n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

22 / 30



Evaluation of a Language Model

“How good is the model at predicting unseen sentences?”

Held-out corpus: Used for evaluation purposes only

I One metric: log likelihood of unseen sentences y(1) . . . y(T )

LL =

T∑
i=1

log p(y(i))

I More popular metric: perplexity of the model:

PP = 2−
1
M

∑T
i=1 log p(y

(i))

where M is the number of words + STOP symbols

23 / 30



Motivation of Perplexity: The Branching Factor

I How many times do we expect to flip a coin until we get a
head, if it comes up head with probability ε?

I 1/ε times
I Mean of the geometric distribution with parameter ε

I Examples
I ε = 0.5: expect to flip two times
I ε = 0.1: expect to flip ten times
I ε = 0.001: expect to flip a thousand times

I The higher the “branching factor” 1/ε is, the more
“surprised” the model.

24 / 30



The Branching Factor of Language Models

I For simplicity, assume a single sentence y = y1 . . . yM−1 STOP.

I The branching factor of the model at word yi:

1

p(yi|y1 . . . yi−1)

I Geometric average of the branching factors:

M∏
i=1

(
1

p(yi|y1 . . . yi−1)

) 1
M

25 / 30



Perplexity = Average Branching Factor

M∏
i=1

(
1

p(yi|y1 . . . yi−1)

) 1
M

=

M∏
i=1

2
log
(

1
p(yi|y1...yi−1)

) 1
M

=
M∏
i=1

2−
1
M

log p(yi|y1...yi−1)

= 2−
1
M

∑M
i=1 log p(yi|y1...yi−1)

= 2−
1
M

log
∏M

i=1 p(yi|y1...yi−1)

= 2−
1
M

log p(y)

= PP

26 / 30



Perplexity = Average Branching Factor

M∏
i=1

(
1

p(yi|y1 . . . yi−1)

) 1
M

=

M∏
i=1

2
log
(

1
p(yi|y1...yi−1)

) 1
M

=

M∏
i=1

2−
1
M

log p(yi|y1...yi−1)

= 2−
1
M

∑M
i=1 log p(yi|y1...yi−1)

= 2−
1
M

log
∏M

i=1 p(yi|y1...yi−1)

= 2−
1
M

log p(y)

= PP

26 / 30



Perplexity = Average Branching Factor

M∏
i=1

(
1

p(yi|y1 . . . yi−1)

) 1
M

=

M∏
i=1

2
log
(

1
p(yi|y1...yi−1)

) 1
M

=

M∏
i=1

2−
1
M

log p(yi|y1...yi−1)

= 2−
1
M

∑M
i=1 log p(yi|y1...yi−1)

= 2−
1
M

log
∏M

i=1 p(yi|y1...yi−1)

= 2−
1
M

log p(y)

= PP

26 / 30



Perplexity = Average Branching Factor

M∏
i=1

(
1

p(yi|y1 . . . yi−1)

) 1
M

=

M∏
i=1

2
log
(

1
p(yi|y1...yi−1)

) 1
M

=

M∏
i=1

2−
1
M

log p(yi|y1...yi−1)

= 2−
1
M

∑M
i=1 log p(yi|y1...yi−1)

= 2−
1
M

log
∏M

i=1 p(yi|y1...yi−1)

= 2−
1
M

log p(y)

= PP

26 / 30



Perplexity = Average Branching Factor

M∏
i=1

(
1

p(yi|y1 . . . yi−1)

) 1
M

=

M∏
i=1

2
log
(

1
p(yi|y1...yi−1)

) 1
M

=

M∏
i=1

2−
1
M

log p(yi|y1...yi−1)

= 2−
1
M

∑M
i=1 log p(yi|y1...yi−1)

= 2−
1
M

log
∏M

i=1 p(yi|y1...yi−1)

= 2−
1
M

log p(y)

= PP

26 / 30



Perplexity = Average Branching Factor

M∏
i=1

(
1

p(yi|y1 . . . yi−1)

) 1
M

=

M∏
i=1

2
log
(

1
p(yi|y1...yi−1)

) 1
M

=

M∏
i=1

2−
1
M

log p(yi|y1...yi−1)

= 2−
1
M

∑M
i=1 log p(yi|y1...yi−1)

= 2−
1
M

log
∏M

i=1 p(yi|y1...yi−1)

= 2−
1
M

log p(y)

= PP

26 / 30



Example Perplexity Values

I If the model perfectly predicts test sentence,

PP = 2−
1
M

log
∏M

i=1 p(yi|y1...yi−1) = 2−
1
M

log 1 = 1

I If the model predicts words uniformly at random,

PP = 2−
1
M

∑M
i=1 log p(yi|y1...yi−1) = 2−

1
M

∑M
i=1 log 1/|V | = |V |

I Empirical values for |V | = 50, 000 (Goodman, 2001)
I Unigram: 955, Bigram: 137, Trigram: 74

27 / 30



Overview

The Probability of a Sentence

The n-Gram Language Models
Unigram, Bigram, Trigram Models
Estimation from Data
Evaluation

Smoothing, Discount Methods

28 / 30



Smoothing

In practice, it’s important to smooth estimation of higher-order
models:

qsmoothed(x′′|x, x′) =λ1q(x′′|x, x′)+
λ2q(x

′′|x′)+
λ3q(x

′′)

where λ1 + λ2 + λ3 = 1 and λi ≥ 0. Called linear interpolation.

29 / 30



Discount Methods

At test time, how do we handle words that were unobserved in
the training corpus?

I Naively, we assign probability 0 to the entire held-out data!

A solution: “steal” some probability mass from observed words and
allocate it for unobserved words.

Called discount methods. Will cover more details in video
lectures / textbook.

30 / 30


