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1 The Ranking Problem

Let X denote the query space and [m] := {1 . . .m} the finite target space. Let perm(m) denote the set of m!
permutations of [m]. The ranking problem is to learn a model Πθ(x) ≈ Π∗(x) where Π∗(x) ⊂ perm(m) is the set of
gold rankings for each x ∈ X . The model can be parameterized as an input-target score function sθ(x, y) ∈ R from
which rankings can be extracted as Πθ(x) = {π ∈ perm(m) : sθ(x, π(1)) ≥ · · · ≥ sθ(x, π(m))}. For annotation, it
is not practical to manually sort all m targets per query, thus we typically assume partial “pointwise” annotation:
humans assign gold scores s∗(x, y) ≥ 0 for some query-target pairs x, y. The score can be graded (e.g., 0–4 where
0 is least relevant and 4 is highly relevant) or binary (e.g., 0 if irrelevant and 1 if relevant).

Evaluation. Pick K ≤ m and let ŷ1:K = (ŷ1 . . . ŷK) ∈ [m]K denote the top-K candidates under the model for
x.1 If the gold scores are binary s∗(x, y) ∈ {0, 1}, they can be viewed as an unordered set of relevant targets
Y(x) = {y ∈ [m] : s∗(x, y) = 1}. In this setting, frequently used metrics are (in [0, 1]; higher is better)

Recall(Y(x), ŷ1:K) =
|Y(x) ∩ {ŷ1 . . . ŷK}|

|Y(x)|
(recall at K)

MRR(Y(x), ŷ1:K) =
1

mink∈{1...K}: ŷk∈Y(x) k
(mean reciprocal rank at K) (1)

AP(Y(x), ŷ1:K) =
1

|Y(x)|

K∑
k=1:yk∈Y(x)

|Y(x) ∩ {ŷ1 . . . ŷk}|
k

(average precision at K) (2)

In (1), we assume the denominator is infinity if there is no relevant target in ŷ1:K (thus MRR is zero). Unlike
recall, MRR is sensitive to the position of the captured relevant targets (taking a value in

{
1, 1

2 , . . . ,
1
K , 0

}
), but

does not care about lower-ranked relevant targets, so it is not suitable if |Y(x)| > 1. AP is sensitive to the positions
of multiple captured relevant targets.2 For general (i.e., non-binary) gold scores s∗(x, y) ∈ R≥0, a standard metric
is (also in [0, 1])

NDCG(s∗, x, ŷ1:K) =

 K∑
j=1

s∗(x, y∗j )

log2(j + 1)

−1
K∑

k=1

s∗(x, ŷk)

log2(k + 1)
(normalized discounted cumulative gain at K)

(3)

where y∗1 . . . y
∗
K are top-K gold targets under s∗. The log in the discount factor has the effect of diminishing the

contribution of lower ranked relevant targets less severely.

2 Learning

Pointwise annotation implies “listwise” and “pairwise” annotation. For instance,

1We assume that ŷ1:K is unique per query x. This disregards the problem of spurious ambiguity (n targets with the same score
generate n! equally valid rankings), but it becomes negligible for any nontrivial model/data in practice.

2AP is the area under the precision-recall curve (thus a value in [0, 1]):
∑K

k=1 P@k × ∆R@k where P@k is the precision at k and

∆R@k =
[[ŷk∈Y(x)]]

|Y(x)| is the change in recall. If K = |Y(x)|, AP is maximized to 1 iff all relavant targets are ranked at the top; in this

case, it is sometimes called label ranking average precision (LRAP).



(pointwise) (listwise) (pairwise)

s∗(x, 1) = 0

s∗(x, 2) = 3

s∗(x, 3) = 0

s∗(x, 4) = 1

s∗(x, 5) = 1

2▷ 5 ≡ 4▷ 1 ≡ 3 | x

2▷ 5 | x 5▷ 1 | x 4▷ 1 | x
2▷ 4 | x 5▷ 3 | x 4▷ 3 | x
2▷ 1 | x
2▷ 3 | x

Note that pairwise comparisons only consider targets with different scores. We will focus on learning from pairwise
comparisons. We assume a training set of queries S ⊂ X where each query x ∈ S is associated with Nx distinct
target pairs yi ̸= y′i such that yi ▷ y′i | x and their weights wx,i ≥ 0:

S(x) =
{
(wx,1, y1, y

′
1) . . . (wx,Nx

, yNx
, y′Nx

)
}

2.1 Logistic regression

We use (weighted) logistic regression to train sθ : X × [m] → R:3

J(θ) = −
∑
x∈S

Nx∑
i=1

wx,i × log σ(sθ(x, yi)− sθ(x, y
′
i)) (4)

Instead of making O(|S|m2) backward calls to compute the gradient of J , we can develop a loss-specific precom-
putation scheme that makes O(|S|m) backward calls. Let Jx,i(θ) = −wx,i × log σ(sθ(x, yi) − sθ(x, y

′
i)) denote the

per-instance loss and define an instance-level reward

λx,i(θ) := −wx,i × σ(sθ(x, y
′
i)− sθ(x, yi)) (5)

which close to 0 if the model is correct and −wx,i if incorrect. It is easy to verify that λx,i(θ) =
∂Jx,i(θ)
∂sθ(x,yi)

= − ∂Jx,i(θ)
∂sθ(x,y′

i)
.

We can also define a target-level adjustment

λx,y(θ) :=

Nx∑
i=1: yi=y

λx,i(θ)−
Nx∑

i=1: y′
i=y

λi,x(θ) (6)

which is positive if sθ(x, y) is too large, negative if sθ(x, y) is too small, and 0 if neither. We can write

∇J(θ) =
∑
x∈S

Nx∑
i=1

(
λx,i(θ)∇sθ(x, yi)− λx,i(θ)∇sθ(x, y

′
i)

)
(7)

=
∑
x∈S

∑
y∈[m]

λx,y(θ)∇sθ(x, y) (8)

(7) is the chain rule. (8) uses the fact that each y ∈ [m] is either absent or exactly one of yi or y
′
i in each instance.

2.2 Boosting

We use tree boosting to estimate f : Rd → R that minimizes

L(f) = −
∑
x∈S

Nx∑
i=1

wx,i × log σ

(
f(ϕ(x, yi))− f(ϕ(x, y′i))

)
(9)

3Assuming universality and constant (nonzero) weights, we will have sθ∗ (x, y) − sθ∗ (x, y
′) = log( p

1−p
) where p is the population

probability that y ▷ y′ | x given random x, y, y′ for an optimal θ∗.



where ϕ(x, y) ∈ Rd is a feature function. It is the same objective as (4), just re-expressed as a functional. Define
for all f : Rd → R and x ∈ S.

λx,i(f) := −wx,i × σ(f(ϕ(x, y′i))− f(ϕ(x, yi))) ∀i ∈ [Nx]

λx,y(f) :=

Nx∑
i=1: yi=y

λx,i(f)−
Nx∑

i=1: y′
i=y

λi,x(f) ∀y ∈ [n]

ρx,y(f) := −
Nx∑

i=1: yi=y

λx,i(f)σ

(
f(ϕ(x, yi))− f(ϕ(x, y′i))

)
−

Nx∑
i=1: y′

i=y

λx,i(f)σ

(
f(ϕ(x, yi))− f(ϕ(x, y′i))

)
∀y ∈ [n]

The first two definitions are analogous to (5) and (6). Let Htree(d) is the set of regression trees h : Rd → R, each
characterized by leaf nodes Leaf1 . . .LeafR ⊂ Rd. See Appendix A.4 for a derivation of the algorithm below.

TreeBoosting
Input: labeled queries S ⊂ X , number of boosting rounds T
Output: local minimum f (T ) : Rd → R of (9)

1. f (0) ← 0

2. For t = 1 . . . T , compute

{Leaf(t)r }Rt
r=1 ← argmin

h∈Htree(d)

∑
x∈S

∑
y∈[n]

ρx,y(f
(t−1))

(
−λx,y(f

(t−1))

ρx,y(f (t−1))
− h(ϕ(x, y))

)2

γ̂(t)
r ← −

∑
x∈S

∑
y∈[n]: ϕ(x,y)∈Leaf

(t)
r

λx,y(f
(t−1))∑

x∈S
∑

y∈[n]: ϕ(x,y)∈Leaf
(t)
r

ρx,y(f (t−1))
∀r = 1 . . . Rt

f (t)(ϕ(x, y))← f (t−1)(ϕ(x, y)) +

Rt∑
r=1

γ̂(t)
r [[ϕ(x, y) ∈ Leaf(t)r ]] ∀x ∈ X , y ∈ [n]

3. Return f (T ) ∈ span (Htree(d)).

2.3 Incorporating Listwise Features

LambdaRank [1] and LambdaMART [13] are the logistic regressor (4) and boosted trees (9) with the choice of
weight, for each (x, yi, y

′
i),

wx,i =

∣∣∣∣NDCG(s∗, x, ŷ1:K)−NDCG(s∗, x, swap(ŷ1:K , yi, y
′
i))

∣∣∣∣ (10)

ŷ1:K is the top-K targets under the model and swap(ŷ1:K , a, b) is the result of swapping a, b. Thus a target pair
that substantially changes the current NDCG score when swapped will receive a large weight; a target pair that
makes no change in NDCG will be ignored.

Optimization. Since wx,i is now a complicated function of the model parameter (e.g., nonsmooth; NDCG does
not change for most continuous changes in the parameter), directly optimizing the objective is no longer feasible.
An empirically successful scheme is the following: in each optimization step for a labeled query x ∈ S:

1. Rank the all targets [m] using the current model f(x, y) ∈ R, calculate the NDCG-based weights wx,i (10).

2. Treat wx,i as constant and update the model parameter to minimize −
∑

x

∑
i wx,i log σ(f(x, yi)− f(x, y′i)).

After each step, we “refresh” the weights wx,i to use the new NDCG score under the updated model. This is not
guaranteed to decrease the loss (e.g., the loss may shoot up when we refresh the weights). However, if we assume
that pairwise ranking is correlated with the change in NDCG under a pairwise swap (which is reasonable), then
refreshing wx,i will further decrease the loss. In this case we can view this as an alternating optimization algorithm.



3 Discussions

3.1 Losses

Ranking losses typically take one of the three forms: pointwise, pairwise, and listwise.

Jpoint(θ) =
∑

(x,y,z)

lpoint(sθ(x, y), z) x ∈ X , y ∈ [m], z ∈ R

Jpair(θ) =
∑

(x,y,y′)

lpair(sθ(x, y)− sθ(x, y
′)) x ∈ X , y, y′ ∈ [m] : y ▷ y′ | x

Jlist(θ) =
∑

(x,y1...yK ,z1...zK)

llist(sθ(x, y1) . . . sθ(x, yK), z1 . . . zK) x ∈ X , y1 . . . yK ∈ [m], z1 . . . zK ∈ R

The pointwise loss can be either regression (e.g., lpoint(t, z) = ||z − t||2) or classification if the score is binary (e.g.,
lpoint(t, z) = −zt + log(1 + et) for z ∈ {0, 1}). The pairwise loss can be any upper bound on the zero-one loss
[[t ≥ 0]] (e.g., the hinge loss lpair(t) = max(0, 1− t), aka., “RankSVM” [6], or the logistic loss lpair(t) = − log σ(t)).
Lambda{Rank,MART} uses the pairwise logistic loss but (heuristically) weighs it by the change in NDCG. A simple
listwise loss is the cross entropy loss:

llist(t1 . . . tK , z1 . . . zK) = −
K∑

k=1

pk(z1 . . . zK) log

(
exp(tk)∑K

k′=1 exp(tk′)

)

where pk(u) ∈ ∆K−1 is a gold distribution over the K targets obtained by normalizing z1 . . . zK (e.g., pk(u) ∝ euk ,
aka., ListNet [2], or just pk(u) ∝ uk since u ≥ 0 [10]). Other listwise losses aim to capture the ranking component
more directly. For instance, assuming WLOG that y1 ▷ · · ·▷ yK | x, we can consider the likelihood loss

llist(t1 . . . tK , z1 . . . zK) = −
K∑

k=1

α(k)× log

(
exp(tk)∑K

k′=k exp(tk′)

)

where we use the chain rule to decompose the likelihood (ListMLE [14]); α(k) is a decreasing function (e.g.,
α(k) = 2K−k − 1) proposed in [8] to emphasize the top targets (p-ListMLE). There is a body of work on relating
listwise losses to ranking metrics (e.g., an optimal ListNet model does not imply the optimal NDCG score [11]) and
developing their differentiable approximations [9].

Pairwise comparisons. We have assumed that pairwise comparisons are extracted from pointwise scores “for
free”. But there are often situations where pointwise scores are difficult to obtain while pairwise comparisons are
easy (e.g., the human perception of quality for the task is too subjective/subtle, but it is still relatively easy to
tell which of the two given inputs is “better”). Pairwise losses are suitable in these situations and have been used
for training a reward model in the context of reinforcement learning [12]. There is also a line of theoretical works
that relate pairwise comparisons with ranking. In general, we must make O(m logm) comparisons to recover the
underlying ranking of m targets (e.g., binary sort) because each comparison provides 1 bit of information about
m! rankings (log(m!) = O(m logm)). It is possible to reduce the number of comparisons by active learning under
certain assumptions (e.g., [7]).

3.2 Web Search

Ranking has been addressed largely for web search where a target y ∈ [m] is an indexed online document. Each
query-document pair (x, y) is represented as a feature vector ϕ(x, y) ∈ Rd that encodes their text match information
(e.g., BM25, proximity), text and meta-information statistics (e.g., term frequency, number of clicks), web graph
(e.g., PageRank) and time (freshness of y) information, and many other types of information and statistics. An
influential dataset is the Yahoo! Learning to Rank Challenge (2010) dataset, which consists of 36k (randomly
sampled, thus non-unique) Yahoo! queries and 883k documents [3]. Each query is associated with a varying
number of documents (24 on average, but as large as 100), extracted from top results of multiple search engines
and manually labeled with 5 relevance grades.

Boosted trees with pairwise losses were the most successful on the web search datasets in the early 2010 (e.g.,
a LambdaMART-based ensemble won the Yahoo! challenge). This inordinately skewed the research efforts on
ranking to boosting and pairwise losses. However, recent works find that neural models are on par with or better



than boosted trees given a suitable feature normalization, architecture, and loss. For instance, [10] use the feature
transformation u 7→ log(1+ |u|)sign (u)+N (0, σ2Id) and self-attention over targets in a listwise loss (cross entropy)
and find that this is competitive with a strong implementation of LambdaMART (LightGBM). While tree-based
learning is indeed more robust to feature scales, there is no intrinsic reason that ranking should be associated with
boosted trees and pairwise losses (in fact, listwise losses work better for neural models [10]).

Current limitations. In the context of web search, the score sθ(x, y) ∈ R should measure how well the document
y fulfills the purpose of the query x. As usual, the best approach for this task is probably large-scale deep learning
directly from natural signals. But the progress in this direction is blocked because the public datasets only release
anonymized information with “unnatural” numeric features. Rather than applying a model directly on the query
and document (x, y) in natural language (plus meta-information), we are applying it to a bunch of statistics and
consequently need to worry about normalizing their values. This is a primitive setting that favors simple classifiers
and kills the benefits of the deep understanding capabilities of neural models from pretraining on natural inputs.
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A Boosting

We view the loss as a functional L(f) = E[l(f(X), Y )] where (X,Y ) ∈ X ×Y is an input-label pair drawn iid from
popXY , f(x) ∈ Rm is any function over x ∈ X , and l : Rm × Y → R is a per-example loss function. A general
scheme for boosting is as follows, assuming some base hypothesis class H of mappings h : X → Rm.

1. Pick an initial function f (0) ∈ H.

2. For t = 1 . . . T :

(a) Approximate the steepest descent direction of L at f (t−1),4

h(t) ≈ argmin
h∈H

L(f (t−1) + h) (11)

(b) Optimize the step size (i.e., line search),

ηt = argmin
η∈R

L(f (t−1) + ηh(t))

(c) Set f (t) = f (t−1) + ηth
(t).

3. Return f (T ) = f (0) +
∑T

t=1 ηth
(t) ∈ span (H) as a local optimum of L(f).

A central step is computing the descent direction (11). Let ∇l(z, y) ∈ Rm and ∇2l(z, y) ∈ Rm×m denote the
gradient and Hessian of l with respect to the input z ∈ Rm (we assume they exist).

Lemma A.1 (Second-order approximation).

L(f (t−1) + h) ≈ E

[(
−∇2l(f (t−1)(X), Y )−1∇l(f (t−1)(X), Y )− h(X)

)⊤
∇2l(f (t−1)(X), Y )(

−∇2l(f (t−1)(X), Y )−1∇l(f (t−1)(X), Y )− h(X)
)]

(12)

We may further simplify (12) using diagonal and identity approximations of the Hessian. Let l′j(z, y) = [∇l(z, y)]j
and l′′j (z, y) = [∇2l(z, y)]j,j denote the first- and second-order partial derivative of l(z, y) with respect to zj ∈ R.

Corollary A.2 (Second-order diagonal approximation).

L(f (t−1) + h) ≈ E

 m∑
j=1

l′′j (f
(t−1)(X), Y )

(
−
l′j(f

(t−1)(X), Y )

l′′j (f
(t−1)(X), Y )

− hj(X)

)2
 (13)

Corollary A.3 (First-order approximation).

L(f (t−1) + h) ≈ E

 m∑
j=1

(
−l′j(f

(t−1)(X), Y )− hj(X)
)2 (14)

In practice we use the empirical functional L(f) =
∑N

i=1 l(f(xi), yi) where (x1, y1) . . . (xN , yN ) ∼ popXY . Approx-
imating the steepest descent direction by (14) and (13), we have

h(t) = argmin
h∈H

N∑
i=1

m∑
j=1

(
− l′j(f

(t−1)(xi), yi)− hj(xi)

)2

(gradient boosting) (15)

h(t) = argmin
h∈H

N∑
i=1

m∑
j=1

l′′j (f
(t−1)(xi), yi)

(
−
l′j(f

(t−1)(xi), yi)

l′′j (f
(t−1)(xi), yi)

− hj(xi)

)2

(Newton boosting) (16)

Thus boosting can be performed for any loss function l, assuming the feasibility of (weighted) least squares for H
and calculation of l′j and l′′j on all examples.

4If can compute h∗ = argminh∈H L(f (t−1) + h) exactly with a universal H, we are done (i.e., f (t−1) + h∗ = argminf :X→Rm L(f)).



Loss function. The input-label pair in l(f(x), y) ∈ R are usually framed as

1. f(x) ∈ Rm: scores of m “categories” for x ∈ X (e.g., m = 1 for regression, m = K for multiclass classification)

2. y ∈ Y: an instruction on how the loss should be calculated based on these scores

The hypothesis h(x) ∈ Rm is viewed as predicting the “deltas” for these m categories. For instance, in gradient
boosting, hj(x) ∈ R is trained to predict the negative j-th partial gradient

−l′j(f(x), y) = −∂l((f1(x), . . . , fm(x)), y)

∂fj(x)

which is the sensitivity of l with respect to the score of the j-th category (called “pseudoresponse”). This becomes
the residual with the squared loss and the probability gap with the logistic loss.

A.1 Boosted Trees

We often use regression trees as the base hypothesis class because they are easy to optimize for weighted least
squares. More specifically, let Htree(d) denote the set of (scalar-valued) regression trees h : Rd → R. We assume
that estimating

h∗ = argmin
h∈Htree(d)

N∑
i=1

wi (ri − h(xi))
2
= {Leafr, br}Rr=1

is easy for any response variables r1 . . . rN ∈ R and weights w1 . . . wN ∈ R. Here, Leaf1 . . .LeafR ⊂ Rd are leaf
nodes (a partition of Rd) and b1 . . . bR ∈ R are the leaf values that characterize h∗: h∗(x) =

∑R
r=1 br [[x ∈ Leafr]].

We will cover three common settings in the loss function l : Rm × Y → R: (1) m = 1, (2) m > 1, and (3) m > 1
with parameter sharing.

A.2 m = 1

The goal is to optimize a scalar-valued predictor for a scalar-valued loss

f∗ = argmin
f :Rd→R

N∑
i=1

l(f(xi), y) l : R× R → R

(16) is a single regression tree

{Leafr, br}Rr=1 = argmin
h∈Htree(d)

N∑
i=1

l′′(f(xi), yi)

(
− l′(f(xi), yi)

l′′(f(xi), yi)
− h(xi)

)2

Now, instead of doing the line search

ηt = argmin
η∈R

N∑
i=1

l

(
f(xi) + η

R∑
r=1

br [[xi ∈ Leafr]] , yi

)

and making the update f̄(x) = f(x) + ηt
∑R

r=1 br [[x ∈ Leafr]], it is common to re-optimize the leaf values along
with the step size:

γ∗ = argmin
γ∈RR

N∑
i=1

l

(
f(xi) +

R∑
r=1

γr [[xi ∈ Leafr]] , yi

)
(17)

whereupon the new update is f̄(x) = f(x) +
∑R

r=1 γ
∗
r [[xi ∈ Leafr]]. Since the leaf nodes partition Rd, we can

estimate each value γ∗
r separately only considering examples that belong to Leafr:

γ∗
r = argmin

γ∈R

N∑
i=1: xi∈Leafr

l (f(xi) + γ, yi) ≈ −
∑N

i=1: xi∈Leafr
l′(f(xi), yi)∑N

i=1: xi∈Leafr
l′′(f(xi), yi)

=: γ̂r

where the approximation is given by a single Newton step from γ = 0. After T iterations, the final predictor has

the form f (T )(x) = f (0)(x) +
∑T

t=1 γ̂
(t)
r [[x ∈ Leaf(t)r ]] ∈ R where Leaf

(t)
1 . . .Leaf

(t)
Rt

are the leaf nodes of the t-th

tree and γ̂
(t)
1 . . . γ̂

(t)
Rt

are the re-optimized values.



Example: least squares. x ∈ Rd, y ∈ R

l(f(x), y) := (y − f(x))2

l′(f(x), y) = −2(y − f(x))

l′′(f(x), y) = 2

Boosting step:

{Leafr, br}Rr=1 = argmin
h∈Htree(d)

N∑
i=1

((yi − f(xi))− h(xi))
2

γ̂r =

N∑
i=1: xi∈Leafr

(yi − f(xi)) ∀r = 1 . . . R

Example: logistic regression. x ∈ Rd, y ∈ {±1}

l(f(x), y) := − log σ(yf(x))

l′(f(x), y) = −yσ(−yf(x))

l′′(f(x), y) = σ(−yf(x))σ(yf(x)) = |ŷ| (1− |ŷ|)

where ŷ = yσ(−yf(x)) is the pseudoresponse. Boosting step:

{Leafr, br}Rr=1 = argmin
h∈Htree(d)

N∑
i=1

|ŷi| (1− |ŷi|)
(

ŷi
|ŷi| (1− |ŷi|)

− h(xi)

)2

γ̂r =

∑N
i=1: xi∈Leafr

ŷi∑N
i=1: xi∈Leafr

|ŷi| (1− |ŷi|)
∀r = 1 . . . R

A.3 m > 1

The goal is to optimize a vector-valued predictor for a vector-valued loss

f∗ = argmin
f :Rd→Rm

N∑
i=1

l(f(xi), y) l : Rm × R → R

The hypothesis h(x) = (h1(x) . . . hm(x)) uses regression trees h1 . . . hm ∈ Htree(d) to predict m scores for x. Since
they are independent, we can reduce (16) to optimizing each tree individually per score j:

{Leaf(j)r , b(j)r }Rj

r=1 = argmin
h∈Htree(d)

N∑
i=1

l′′j (f(xi), yi)

(
−
l′j(f(xi), yi)

l′′j (f(xi), yi)
− h(xi)

)2

Again, instead of a line search

ηt = argmin
η∈R

N∑
i=1

l

f(xi) + η

 Rj∑
r=1

b(j)r

[[
xi ∈ Leaf(j)r

]]m

j=1

, yi


we re-optimize the leaf values,

{γ(j)
∗ }mj=1 = argmin

γ(j)∈RRj ∀j=1...m

N∑
i=1

l

f(xi) +

 Rj∑
r=1

γ(j)
r

[[
xi ∈ Leaf(j)r

]]m

j=1

, yi


Unlike (17), this objective does not factorize over γ

(j)
r because each example i will trigger γ

(1)
r1 . . . γ

(m)
rm for some

rj ∈ [Rj ] which may interact nonlinearly inside l. However, we can again derive a simple approximation based on

a single Newton step from γ
(j)
r = 0 by using a diagonal approximation of the Hessian:

[γ
(j)
∗ ]r ≈ −

∑N

i=1: xi∈Leaf
(j)
r

l′j(f(xi), yi)∑N

i=1: xi∈Leaf
(j)
r

l′′j (f(xi), yi)
=: γ̂(j)

r

After T iterations, the final predictor has the form f
(T )
j (x) = f

(0)
j (x) +

∑T
t=1

∑Rt,j

r=1 γ̂
(t,j)
r [[x ∈ Leaf(t,j)r ]] ∈ R where

Leaf
(t,j)
1 . . .Leaf

(t,j)
Rt,j

are the leaf nodes of the t-th iteration’s j-th tree and γ̂
(t,j)
1 . . . γ̂

(t,j)
Rt,j

are the re-optimized values.



Example: multiclass classification. x ∈ Rd, y ∈ {1 . . .m}

l(f(x), y) := − log p(y|x; f) p(j|x; f) := efj(x)∑m
k=1 e

fk(x)
∀j = 1 . . .m

l′j(f(x), y) = p(j|x; f)− [[j = y]]

l′′j (f(x), y) = p(j|x; f)(1− p(j|x; f))

As in logistic regression, denoting the pseudoresponse by ŷ = [[j = y]]−p(j|x; f) and using the fact that |ŷ| (1−|ŷ|) =
p(j|x; f)(1− p(j|x; f)), we can write the boosting step in the nicer form:

{Leaf(j)r , b(j)r }Rj

r=1 = argmin
h∈Htree(d)

N∑
i=1

|ŷi| (1− |ŷi|)
(

ŷi
|ŷi| (1− |ŷi|)

− h(xi)

)2

∀j = 1 . . .m

γ̂(j)
r =

∑N

i=1: xi∈Leaf
(j)
r

ŷi∑N

i=1: xi∈Leaf
(j)
r

|ŷi| (1− |ŷi|))
∀j = 1 . . .m, r = 1 . . . Rj

Historical notes: tree boosting for multiclass classification has been proposed in LogitBoost [4]. It makes the
normalization assumption

∑m
j=1 fj(x) = 0 to get rid of overparameterization so the updates are scaled by m−1

m .
Gradient boosting has also been proposed (aka. “MART”) [5], arguing that the second-order update is numerically
unstable when p(1− p) is small. However, it does not seem to be a serious issue in practice and Newton boosting
is preferred.

A.4 m > 1 with parameter sharing

The goal is to optimize a scalar-valued predictor for a vector-valued loss

f∗ = argmin
f :Rd→R

N∑
i=1

l((f(ϕ(xi, k)))
m
k=1, y) l : Rm × R → R

The predictor is shared across the m “feature expansions” to yield m scores. Here, we assume a feature function
ϕ : X ×C → Rd that yields a d-dimensional vector representation for each input-category pair. C ⊃ {1 . . .m} is the
space of all possible categories. This formulation allows for zero-shot inference (i.e., we can apply f to an unseen
catogery k ∈ C\ {1 . . .m} at test time). To make the notation tractable we will shorthand fϕ(x) := (f(ϕ(x, k)))mk=1.

The hypothesis takes the form x 7→ (hshared(ϕ(x, 1)) . . . hshared(ϕ(x,m))) where hshared ∈ Htree(d) is obtained by (16):

{Leafr, br}Rr=1 = argmin
h∈Htree(d)

N∑
i=1

m∑
j=1

l′′j (f
ϕ(xi), yi)

(
−
l′j(f

ϕ(xi), yi)

l′′j (f
ϕ(xi), yi)

− h(xi)

)2

(i.e., a single regression tree is multitasking m weighted least squares tasks). Again, instead of a line search

ηt = argmin
η∈R

N∑
i=1

l

(
fϕ(xi) + η

(
R∑

r=1

br [[ϕ(xi, k) ∈ Leafr]]

)m

k=1

, yi

)
we re-optimize the leaf values,

γ∗ = argmin
γ∈RR

N∑
i=1

l

(
fϕ(xi) +

(
R∑

r=1

γr [[ϕ(xi, k) ∈ Leafr]]

)m

k=1

, yi

)
Again, unlike (17), it does not factorize over γr because each example i can trigger multiple values of γ (e.g.,
ϕ(xi, 1) ∈ Leafr and ϕ(xi, 2) ∈ Leafr′ will trigger γr, γr′), which may interact nonlinearly inside l. But again
using a diagonal approximation of the Hessian, we can derive a simple approximation based on a Newton step from
γ = 0R:

γ∗
r ≈ −

∑N
i=1

∑m
j=1: ϕ(xi,j)∈Leafr

l′j(f
ϕ(xi), yi)∑N

i=1

∑m
j=1: ϕ(xi,j)∈Leafr

l′′j (f
ϕ(xi), yi)

=: γ̂r

After T iterations, the final predictor can predict the score of any input x ∈ X and category k ∈ C by f
(T )
k (x) =

f (0)(ϕ(x, k)) +
∑T

t=1

∑Rt

r=1 γ̂
(t)
r [[ϕ(x, k) ∈ Leaf(t)r ]] ∈ R where Leaf

(t)
1 . . .Leaf

(t)
Rt

are the leaf nodes of the t-th tree

and γ̂
(t)
1 . . . γ̂

(t)
Rt

are the re-optimized values.



Example: pairwise comparisons. x ∈ X , y =
{
(wx,1, y1, y

′
1) . . . (wx,Nx , yNx , y

′
Nx

)
}

where wx,i ≥ 0, yi, y
′
i ∈

{1 . . .m}, and yi ̸= y′i for i = 1 . . . Nx

l(fϕ(x), y) := −
Nx∑
i=1

wx,i × log σ

(
f(ϕ(x, yi))− f(ϕ(x, y′i))

)

l′j(f
ϕ(x), y) = −

Nx∑
i=1: yi=j

wx,i × σ

(
f(ϕ(x, y′i))− f(ϕ(x, yi))

)
+

Nx∑
i=1: y′

i=j

wx,i × σ

(
f(ϕ(x, y′i))− f(ϕ(x, yi))

)

l′′j (f
ϕ(x), y) =

Nx∑
i=1: yi=j

wx,i × σ

(
f(ϕ(x, y′i))− f(ϕ(x, yi))

)
σ

(
f(ϕ(x, yi))− f(ϕ(x, y′i))

)
+

Nx∑
i=1: y′

i=j

wx,i × σ

(
f(ϕ(x, y′i))− f(ϕ(x, yi))

)
σ

(
f(ϕ(x, yi))− f(ϕ(x, y′i))

)

We can use the symmetry in the expressions to simplify them somewhat.5 Boosting step:

{Leafr, br}Rr=1 = argmin
h∈Htree(d)

∑
(x,y)

m∑
j=1

l′′j (f
ϕ(x), y)

(
−
l′j(f

ϕ(x), y)

l′′j (f
ϕ(x), y)

− h(ϕ(x, j))

)2

γ̂r = −
∑

(x,y)

∑m
j=1: ϕ(x,j)∈Leafr

l′j(f
ϕ(x), y)∑

(x,y)

∑m
j=1: ϕ(x,j)∈Leafr

l′′j (f
ϕ(x), y)

∀r = 1 . . . R

B Proofs

Proof of Lemma A.1. We will relate the following three objectives for h : X → Rm,

J1(h) = E [l(f(X) + h(X), Y )] = L(f + h)

J2(h) = E

[
l(f(X), Y ) +∇l(f(X), Y )⊤h(X) +

1

2
h(X)⊤∇2l(f(X), Y )h(X)

]
J3(h) = E

[(
−∇2l(f(X), Y )−1∇l(f(X), Y )− h(X)

)⊤ ∇2l(f(X), Y )
(
−∇2l(f(X), Y )−1∇l(f(X), Y )− h(X)

)]
J2(h) is an approximation of J1(h) obtained by plugging in the second-order Taylor approximation l(f(x)+h(x), y) ≈
l(f(x), y)+∇l(f(x), y)⊤h(x)+ 1

2h(x)
⊤∇2l(f(x), y)h(x) for all x ∈ X and y ∈ Y. J3(h) is equivalent to J2(h), more

explicitly

J3(h) = E
[(
−∇2l(f(X), Y )−1∇l(f(X), Y )− h(X)

)⊤ ∇2l(f(X), Y )
(
−∇2l(f(X), Y )−1∇l(f(X), Y )− h(X)

)]
= E

[(
−∇2l(f(X), Y )−1∇l(f(X), Y )− h(X)

)⊤ (−∇l(f(X), Y )−∇2l(f(X), Y )h(X)
)]

= E
[
∇l(f(X), Y )⊤∇2l(f(X), Y )−1∇l(f(X), Y ) + 2∇l(f(X), Y )⊤h(X) + h(X)⊤∇2l(f(X), Y )h(X)

]
= E

[
∇l(f(X), Y )⊤∇2l(f(X), Y )−1∇l(f(X), Y )

]
+ 2J2(h)− 2E [l(f(X), Y )]

so that argminh∈H J3(h) = argminh∈H J2(h). Assuming H is sufficiently expressive, the optimal regressor h∗ for
J3 (and J2) predicts for each x ∈ X

h∗(x) = argmin
z∈Rm

E
[(
−∇2l(f(x), Y )−1∇l(f(x), Y )− z

)⊤ ∇2l(f(x), Y )
(
−∇2l(f(x), Y )−1∇l(f(x), Y )− z

)]
5Define λx,i(f) := −wx,i × σ(f(ϕ(x, y′i))− f(ϕ(x, yi))), then we can write

l′j(f
ϕ(x), y) =

Nx∑
i=1: yi=j

λx,i(f)−
Nx∑

i=1: y′
i=j

λx,i(f)

l′′j (f
ϕ(x), y) = −

Nx∑
i=1: yi=j

λx,i(f)σ

(
f(ϕ(x, yi))− f(ϕ(x, y′i))

)
−

Nx∑
i=1: y′

i=j

λx,i(f)σ

(
f(ϕ(x, yi))− f(ϕ(x, y′i))

)



Let π : Rm → R denote the objective for z here. The gradient and Hessian of π(z) are

∇π(z) = 2E [∇l(f(x), Y )] + 2E
[
∇2l(f(x), Y )

]
z

∇2π(z) = 2E
[
∇2l(f(x), Y )

]
which implies that π is convex (i.e., ∇2π(z) ⪰ 0) if l is convex (in the first argument). In this case, the optimal
prediction is given by

h∗(x) = −E
[
∇2l(f(x), Y )

]−1
E [∇l(f(x), Y )]
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