
Randomized Algorithms

Karl Stratos

1 Set Membership

Let S = {x1 . . . xn} ⊂ X where n is very large, and consider the task of checking y ∈ S. A naive approach is to
store S in a list and compare y against every x ∈ S, taking O(n) space and time. A better approach is to store S in
a hash table, taking O(1) time on average through hashing (Appendix A). But the space complexity remains O(n)
since a hash table must keep all original elements to resolve collisions.

If we ignore collisions, we only need O(m) space for a fixed hash table size m. This simplified data structure is
called a Bloom filter [1]. More specifically,

1. We do not keep the actual elements in S. To check y ∈ S, we use only a binary vector b ∈ {0, 1}m where
bi = 1 indicates that some x ∈ S has been binned into the i-th bucket. Thus we may get false positives.

2. There is no false negative.

3. The query time is O(1) in the worst case.

We can reduce the chance of false positives by using k independent hash functions h1 . . . hk : X → {1 . . .m}. An
example with S = {a, b, c} may look like (m = 8, k = 2)

b = (0, 0, 0, 0, 0, 0, 0, 0)

Insert(a): h1(a) = 2 and h2(a) = 6 b = (0, 1, 0, 0, 0, 1, 0, 0)

Insert(b): h1(b) = 6 and h2(b) = 3 b = (0, 1, 1, 0, 0, 1, 0, 0)

Insert(c): h1(c) = 1 and h2(c) = 7 b = (1, 1, 1, 0, 0, 1, 1, 0)

IsMember(e): h1(e) = 4 and h2(e) = 6 ⇒ False (true negative) b = (1, 1, 1, 0, 0, 1, 1, 0)

IsMember(f): h1(f) = 1 and h2(f) = 3 ⇒ True (false positive) b = (1, 1, 1, 0, 0, 1, 1, 0)

We see that e ̸∈ S avoided being a false positive even though one hash collided (bh2(e) = 1). In general, y ̸∈ S
becomes a false positive iff all k hashes collide. This gives the standard false positive rate analysis:

Pr (“y ∈ S”|k) = Pr
(
bhj(y) = 1 for all j ∈ {1 . . . k}

)
=

k∏
j=1

Pr
(
bhj(y) = 1

)
(since h1(y) . . . hk(y) ∈ {1 . . .m} are independent)

=

k∏
j=1

(
1

m

m∑
i=1

Pr (bi = 1)

)
(since hj is uniformly random)

=

(
1−

(
1− 1

m

)nk
)k

(since Pr (bi = 0) = (1− 1/m)nk for any i)

≈
(
1− e−

n
mk
)k

(since e−z ≈ 1− z for z ≈ 0) (1)

We can minimize (1) over k > 0 (ignoring wholeness) to approximate the optimal number of hash functions as
a function of “bits per element” m

n . Even though (1) is nonconvex, it is minimized to 2−(ln 2)m
n at k⋆ = (ln 2)mn

(Lemma B.1). For instance, we can achieve the false positive rate of 1% using 9.6 bits per element assuming an
optimal number of independent hash functions (k ≈ 7).

1

2 Set Similarity

Given sets S, S′ ⊂ {1 . . .m}, a standard measurement of their similarity is Jaccard similarity,

JS(S, S′) :=
|S ∩ S′|
|S ∪ S′|

∈ [0, 1] (2)

which is 0 iff S and S′ are disjoint and 1 iff S = S′. Computing (2) takes O(m) space and time. Our goal is to
reduce this complexity to O(1) (at query time) by sampling.

2.1 MinHash

If we view (2) as a probability, it is amenable to Monte Carlo methods. For instance, we can sample uniformly at
random from S∪S′ for k times and return the fraction of samples in S∩S′ as an unbiased estimate of (2). However,
doing this naively gives no computational advantage over exact calculation. MinHash [2] is a clever technique
that allows for efficient estimation, though it requires a pre-query computation (signature matrix construction) that
takes O(m) time. Deriving MinHash involves multiple steps.

2.1.1 Problem reformulation

First, we view a set S as a binary feature vector ϕ(S) ∈ {0, 1}m where ϕi(S) = 1 iff i ∈ S. Let Φ = [ϕ(S), ϕ(S′)] ∈
{0, 1}m×2

. There are three types of rows in Φ:

• A ⊂ {1 . . .m}: the set of a rows equal to [1, 1]

• B ⊂ {1 . . .m}: the set of b rows equal to [1, 0] or [0, 1]

• C ⊂ {1 . . .m}: the set of c rows equal to [0, 0]

Since they are disjoint, we have a + b + c = m. Now the task of estimating (2) can be framed as sampling from

A ∪ B and computing the fraction of rows landing in A, since this converges to a
a+b =

|S∩S′|
|S∪S′| = JS(S, S′).

2.1.2 Random permutation

Next, we use a random permutation π of {1 . . .m} to simulate the sampling process. Let Φπ = [ϕπ(S), ϕπ(S′)]
denote the row-permuted matrix where Φπ

π(i) = Φi. We define a “signature” cπ(S) ∈ {1 . . .m} of the set S based

on the permuted feature vector ϕπ(S) as follows:

cπ(S) = min
{
j : ϕπ

j (S) = 1
}
= min {π(i) : ϕi(S) = 1} (3)

(i.e., the earliest position of 1 in ϕπ(S)). We may view the signature matrix Cπ = [cπ(S), cπ(S
′)] ∈ {1 . . .m}1×2

as

a random 1-dimensional projection of Φ ∈ {0, 1}m×2
. An example with m = 6, S = {4}, and S′ = {3, 4, 6} is

Φ =


0 0
0 0
0 1
1 1
0 0
0 1

 π =


4
1
6
5
3
2

 Φπ =


0 0
0 1
0 0
0 0
1 1
0 1

 Cπ =
[
5 2

]

Theorem 2.1 (The MinHash Theorem). With randomness over the permutation π of {1 . . .m},

Pr (cπ(S) = cπ(S
′)) = JS(S, S′)

Proof. Let iπ = min {cπ(S), cπ(S′)} (e.g., 2 for the green row in Φπ above). Then

Pr (cπ(S) = cπ(S
′)) = Pr

(
Φπ

iπ = [1, 1]
)
=

a

a+ b

The last equality holds because (i) Φπ
iπ
̸∈ C by definition (3), and (ii) π is uniformly random over A ∪ B ∪ C. This

implies that iπ is uniformly random over A ∪ B.

Remark 2.2. It is crucial that the same permutation π is used to permute ϕ(S) and ϕ(S′) together. In contrast,
there is nothing special about taking the earliest position of 1 in the permuted feature vectors. A “MaxHash”
taking the latest position of 1 would be equally valid.

2

The estimator. Assuming k independent random permuations Π = (π1 . . . πk) ∈ {1 . . .m}k×m
, let CΠ ∈

{1 . . .m}k×2
denote the signature matrix whose r-th row is [cπr

(S), cπr
(S′)]. The multi-sample estimator is

ĴSk(S, S
′) =

1

k

k∑
r=1

[[cπr (S) = cπr (S
′)]] (4)

(i.e., the agreement rate between the two columns of CΠ). Since ĴS(S, S′) ∈ [0, 1] is bounded and has the mean
JS(S, S′) by Theorem 2.1, a trivial application of Hoeffding’s inequality gives us for all ϵ, δ > 0,

k >
1

2ϵ2
ln

2

δ
⇒ Pr

(∣∣∣ĴSk(S, S′)− JS(S, S′)
∣∣∣ < ϵ

)
> 1− δ

(e.g., setting ϵ = 0.1 and δ = 0.01, we have that using k = 265 random permuations is sufficient to guarantee with
99% confidence that the estimate is off by at most 0.1).

2.1.3 Constructing the signature matrix

More generally, we have n ≥ 2 nonempty sets S1 . . . Sn ⊂ {1 . . .m} and wish to estimate Jaccard similarity for

any pair. Using k random permutations Π, once we have the corresponding signature matrix CΠ ∈ {1 . . .m}k×n
,

estimating Jaccard similarity for any pair at query time requires only O(k) time and space by (4). Since cπ(S) =
min {π(i) : ϕi(S) = 1} (3), we can construct CΠ without storing Φπ ∈ {0, 1}m×n

(the intermediate permuted
matrix) for each π ∈ Π in a streaming fashion as follows:

Input: Φ = [ϕ(S1) . . . ϕ(Sn)] ∈ {0, 1}m×n, k ≪ m
Output: CΠ ∈ {1 . . .m}k×n

• Compute k random permutations Π = (π1 . . . πk) ∈ {1 . . .m}k×m.

• Initialize CΠ ←∞k×n.

• For i = 1 . . .m:

– For j = 1 . . . n such that ϕi(Sj) = 1:

CΠ
r,j ← min(CΠ

r,j , πr(i)) ∀r = 1 . . . k

The construction takes O(mnk) time and O(mk+nk) space. We can reduce the memory overhead by using a linear
hash function hr : Z → {1 . . .m} to simulate a permutation πr (Appendix A.2). This yields the final hash-based
version:

Input: Φ = [ϕ(S1) . . . ϕ(Sn)] ∈ {0, 1}m×n, k ≪ m
Output: CH ∈ {1 . . .m}k×n

• Initialize k independent random linear hash functions h1 . . . hk : Z → {1 . . .m} parameterized by
coefficients H ∈ Rk×2 simulating k random permutations.

• Initialize CH ←∞k×n.

• For i = 1 . . .m:

– Precompute the hash values h1(i) . . . hk(i) ∈ {1 . . .m}.
– For j = 1 . . . n such that ϕi(Sj) = 1:

CH
r,j ← min(CH

r,j , hr(i)) ∀r = 1 . . . k

While it has the same asymptotic complexity (for m < n), it completely avoids the overhead of computing and

storing Π ∈ {1 . . .m}k×m
.

2.2 MinHash LSH

A common use of MinHash is quickly finding similar documents in a large pool of n documents. In this setting, a
document S ⊂ {1 . . .m} is viewed as a bag of m words, featurized as ϕ(S) ∈ {0, 1}m. For some suitable number

of hash functions k, we can construct the signature matrix CH ∈ {1 . . .m}k×n
in O(mnk) time and O(nk) space

using MinHash. (When a new document comes in, we can add it to the matrix in O(mk) time and O(k) space.)

3

Assuming we have CH ∈ {1 . . .m}k×n
, we are interested in finding all document pairs Si, Sj such that JS(Si, Sj) > τ

for some threshold τ ∈ [0, 1]. A naive way of achieving this is to compute ĴSk(Si, Sj) =
1
k

∑k
r=1[[C

H
r,i = CH

r,j]] for all

i, j which takes O(kn2) time, and collecting i, j such that ĴSk(Si, Sj) > τ as an approximation. This is intractable
for a large value of n. Instead, locality-sensitive hashing (LSH) is used to approximate these pairs in O(kn)
time. LSH refers to the broad family of fuzzy hashing techniques that hash similar input items into the same
buckets with high probability.

Specifically, we hash CH ∈ {1 . . .m}k×n
again. Divide the rows into B “bands” of width M (thus k = BM).

Choose B independent vector-valued hash functions g1 . . . gB : {1 . . .m}M → {1 . . . P} (e.g., (10)) where P = O(n)

is the number of LSH buckets. Hash the bands in CH to obtain a new matrix D ∈ {1 . . . P}B×n
, taking O(kn)

time. Finally, take any i, j such that Db,i = Db,j for some b ∈ {1 . . . B} as a candidate pair. Then we have

Pr (i and j become a candidate pair) = 1−
(
1− JS(Si, Sj)

M
)B

where the randomness is over the random permutations in MinHash.1 Thus given a pair of documents with Jaccard
similarity s ∈ [0, 1], we can compute the probability of them becoming a candidate pair under LSH by

f(s) = 1−
(
1− sM

)B
It turns out that f forms an S-shaped curve on [0, 1] for any choice of M and B. Below we plot it for some choices
for k = 100 = MB:

It is easy (though tedious) to show that f ′′(s⋆) = 0 (i.e., f changes the fastest) at

s⋆ =

(
M − 1

MB − 1

)1/M

≈
(

1

B

)1/M

where the approximation holds for large M . The idea is that two documents are likely to become a candidate pair
if their Jaccard similarity is at least (1/B)1/M . This gives a principled strategy to select B and M to optimize the
chance of collecting pairs with similarity > τ . Specifically, given the target threshold τ , choose B and M (satisfying
k = BM) such that (1/B)1/M ≈ τ .

3 Sampling Without Replacement

Sampling k ≤ n elements from an array x = (x1 . . . xn) without replacement can be framed as sampling a random
subset R ⊆ {1 . . . n} with |R| = k. Let R denote all

(
n
k

)
possible outcomes of R. We want to define a distribution

pR of R ∈ R such that it contains any of the n positions with equal probability.2 Formally,

Pr (i ∈ R) =
∑

r∈R: i∈r

pR(r) =
k

n
∀i ∈ {1 . . . n} (5)

1A standard way to see this is to note that (1) si,j := JS(Si, Sj) is the probability that i and j agree in any row of CH ∈ {1 . . .m}k×n,
(2) sMi,j is the probability that i and j agree in an entire band, (3) 1−sMi,j is the probability that i and j disagree in a band, (4) (1−sMi,j)

B

is the probability that i and j disagree in all B bands, and thus (5) 1− (1− sMi,j)
B is the probability that i and j agree in some band

(i.e., i and j become a candidate pair).
2We can check that this probability must be k

n
. We have n equalities Pr (i ∈ R) =

∑
r:i∈r pR(r) = p for some p. Since any r ∈ R

contains k distinct positions, pR(r) is used k times in these equations. Thus their sum is k(
∑

r pR(r)) = np, or p = k
n
.

4

A strictly stronger condition is R ∼ unif(R).3 Then

Pr (i ∈ R) =
∑

r∈R: i∈r

1(
n
k

) =

(
n−1
k−1

)(
n
k

) =
k

n

However, explicitly considering
(
n
k

)
members of R takes O((nk)

k) time and space. We can instead directly sample
without replacement in O(k) time and O(n) space as follows. Store an array z = (1 . . . n) of the n positions. For
j = 1 . . . k: (1) sample Ij ∼ Unif({j . . . n}), (2) swap zj and zIj . For n = 5 and k = 3, this my look like

j = 1 : I1 = 4 ∼ Unif({1, 2, 3, 4, 5}) ⇒ z = (4, 2, 3, 1, 5)

j = 2 : I2 = 2 ∼ Unif({2, 3, 4, 5}) ⇒ z = (4, 2, 3, 1, 5)

j = 3 : I3 = 4 ∼ Unif({3, 4, 5}) ⇒ z = (4, 2, 1, 3, 5)

Let Z denote the resulting random z. For j ≤ k, the only way Zj = i is if i is not selected for the first j − 1 rounds
and then selected in the j-th round. In the above example, Z3 = 1 because 1 is not selected in round 1 (with
probability 4

5) and round 2 (with probability 3
4), then selected in round 3 (with probability 1

3). The probability of
the event is thus 1

5 . Note that the swapping mechanism is crucial for these probabilities to hold. More generally,

Pr (Zj = i) =

(
n− 1

n

)
×
(
n− 2

n− 1

)
× · · · ×

(
n− j + 1

n− j + 2

)
×
(

1

n− j + 1

)
=

1

n
∀j ∈ {1 . . . k} , i ∈ {1 . . . n} (6)

Taking R = {Z1 . . . Zk} satisfies (5) since

Pr (i ∈ R) = Pr (Zj = i for some j ∈ {1 . . . k}) ∗
=

k∑
j=1

Pr (Zj = i) =
k

n

where
∗
= holds because Zj = i and Zt = i are disjoint events for j ̸= t. On the other hand, having a random subset

R satisfying (5) does not imply a random array Z satisfying (6), so the algorithm solves a strictly harder problem.

In-place shuffling Our intention is to sample k elements from x = (x1 . . . xn), so we can directly work with x in
place, thereby avoiding the O(n) space overhead needed for storing z = (1 . . . n). The algorithm is

Shuffle(x, k)

• For j = 1 . . . k:

Ij ∼ Unif({j . . . N})
xj , xIj ← xIj , xj

Shuffle(x, k) reorders x so that x1 . . . xk correspond to any of the n positions in the original array. In particular,
Shuffle(x, n) randomly permutes x.

3.1 Reservoir Sampling

We now wish to sample k elements from a streaming array x1, x2, . . . without replacement. For t = 1, 2, . . ., we
want any of x1 . . . xt to be included with equal probability. Again, this can be framed as sampling a random subset
Rt ⊆ {1 . . . t} with |Rt| = k such that

Pr (i ∈ Rt) =
k

t
∀i ∈ {1 . . . t} (7)

where we assume t > k.4 A naive solution is to shuffle (1 . . . t) and take k positions at every step t. We can instead
make incremental updates. Starting from an initial “reservoir” z = (1 . . . k), for t = k + 1, k + 2, . . . (1) sample
It ∼ Unif({1 . . . t}), (2) if It ≤ k then overwrite zIt ← t. For n = 6 and k = 3, this might look like

t = 4 : I4 = 2 ∼ Unif({1, 2, 3, 4}) ⇒ z = (1, 4, 3)

t = 5 : I5 = 4 ∼ Unif({1, 2, 3, 4, 5}) ⇒ z = (1, 4, 3)

t = 6 : I6 = 1 ∼ Unif({1, 2, 3, 4, 5, 6}) ⇒ z = (6, 4, 3)

3The non-uniform distribution pR({1, 2}) = pR({3, 4}) = 0.5 for n = 4 and k = 2 satisfies (5).
4For t ≤ k, we can take Rt = {1 . . . t} and vacuously satisfy (7).

5

Let Rt = {z1 . . . zk} at each t > k. Clearly, t ∈ Rt iff It ≤ k (with probabilitiy k
t). For any i < t, i ∈ Rt iff i

is already in Rt−1 and not selected. In the above example, 4 ∈ R6 because 4 ∈ R5 (which has probability 3
5 by

induction) is not selected (with probability 5
6 since I6 is uniform). The probability of 4 ∈ R6 is thus 1

2 . More
generally for all i < t,

Pr (i ∈ Rt) =
k

t− 1
× t− 1

t
=

k

t

so (7) is satisfied. We can again work directly with the array elements x1, x2, . . . instead of positions. The algorithm
is

ReservoirSampling(k)

• z ← ()

• For t = 1 . . . k: receive xt, append it to z.

• For t = k + 1, k + 2, . . .:

– Receive xt.

– It ∼ Unif({1 . . . t})
– If It ≤ k: zIt ← xt

At any step t, z1 . . . zmin(k,t) are samples from x1 . . . xt without replacement where every xi is equally likely to be
included.

3.1.1 Online shuffling

Without any modification, the algorithm can be used for online shuffling if the initial reservoir corresponds to a
shuffle of {1 . . . k}. Let Zt denote the reservoir after update t > k where Zt−1 is a shuffle of {1 . . . t− 1} (i.e.,
Pr (Zt−1,j = i) = 1

t−1 for all j ∈ {1 . . . k} and i ∈ {t− 1}). Then for all j ∈ {1 . . . k},

Pr (Zt,j = t) = Pr (It = j) =
1

t

∀i < t : Pr (Zt,j = i) = Pr (Zt−1,j = i and It ̸= j) =
1

t− 1
× t− 1

t
=

1

t

so Zt corresponds to a shuffle of {1 . . . t}.

References

[1] Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors. Communications of the ACM ,
13(7), 422–426.

[2] Broder, A. Z. (1997). On the resemblance and containment of documents. In Proceedings. Compression and
Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29. IEEE.

[3] Karp, R. M. and Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms. IBM journal of
research and development , 31(2), 249–260.

6

A Hash Functions

We index from 0 for convenience. An ideal hash function h : X → {0 . . .m− 1} satisfies

• Deterministic: For any x ∈ X , the output h(x) ∈ {0 . . .m− 1} is always the same.

• Uniform: Assuming a distribution pop over X , all m bins are used equally likely:

Pr
x∼pop

(h(x) = i) =
1

m
∀i ∈ {0 . . .m− 1} (8)

• Efficient : The time and space required for hashing is constant in |X | and m.

We have a collision when h(x) = h(y) for x ̸= y. Hash functions are used to implement a hash table, a data
structure for efficiently maintaining keys in X .5 But they also have direct applications in randomized algorithms.

A.1 Modular Arithmetic

To achieve binning into m buckets, hashing relies on modular arithmetic. Recall that for an integer m ≥ 1, “a = b
mod m” means a is the remainder when dividing b by m (i.e., b = km + a for some integer k). Equivalently, m
is the divisor of their difference: b − a = km. Any pair of integers (a, b) whose difference is divisible by m are
congruent modulo m, denoted by a ≡ b (mod m). This is an equivalence relation, thus reflexive, symmetric, and
transitive, and compatible with addition, subtraction, and multiplicaiton. An integer a generates the equivalence
class modulo m by ā = {a+ km : k ∈ Z}, with the value within {0 . . .m− 1} serving as the representative. The set
of all m equivalence classes modulo m forms a ring, denoted Z/mZ. It is beyond the scope of this note to cover the
mathematical richness of modular arithmetic. Instead, we will use basic identities that are useful for computational
purposes (e.g., Lemma B.3). One property of note is the condition for the existence of a multiplicative inverse. The
modular multiplicative inverse of a modular m is an integer denoted a−1 ∈ Z such that aa−1 ≡ 1 (mod m).
It does not always exist (e.g., for a = 2 and m = 4). However, it exists and is unique iff a and m are coprime
(i.e., gcd(a,m) = 1), in particular for all a ∈ {1 . . .m− 1} if m is prime, allowing us to solve linear congruence like
ax ≡ b (mod m) by x ≡ a−1b (mod m). There are algorithms to find the inverse quickly, in O(logm) and much
faster under mild conditions.

A.2 Hashing Integers

A common hashing scheme for X = Z is division hashing. In the simplest form, we may define a family of linear
hash functions ha,b : Z→ {0 . . .m− 1} indexed by a ∈ Z coprime with m and b ∈ {0 . . .m− 1} where

ha(x) = (ax+ b) mod m (9)

We can show that ha cycles through some permutation πa of {0 . . .m− 1} over Z (Lemma B.8). For instance,
ha(x) = (2x + 1) mod 3 cycles through (1, 0, 2) starting from x = 0. By randomly sampling the parameters a, b,
we can simulate sampling a random permutation of {0 . . .m− 1}.6 This fact is useful for applications like MinHash
(Section 2.1). More generally for vector-valued inputs, linear hash functions ha,b : Zd → {0 . . .m− 1} are indexed
by a ∈ Zd and b ∈ Z and compute

ha,b(x) = (a⊤x+ b) mod m (10)

A.3 Hashing Strings

A common hashing scheme when X is a set of strings over a vocabulary {1 . . . V } (V < m) is polynomial rolling
hashing. The only parameter is a prime p ̸= m typically set around V . Given a string x = (x0 . . . xn−1) ∈
{1 . . . V }n, the hash function hp(x) ∈ {0 . . .m− 1} computes

hp(x) = (x0 + x1p+ x2p
2 + · · ·+ xn−1p

n−1) mod m (11)

5A hash table uses a hash function to quickly bin X to m buckets then resolves any collision (which can take O(|X |) in the worst
case under a bad hash function). It can be seen as a tradeoff between memory and time. If infinite memory is allowed, we can use the
key as the index and have no collision. If infinite time is allowed, we can discard keys and search through all values.

6If m is prime, we can pick any non-multiple of m as a. If m is not prime, for convenience we can pick the smallest prime number
p > m and use ha,b(x) = ((ax + b) mod p) mod m where we can use any non-multiple of p as a. The first modulo ensures an even
spread across a large space {0 . . . p− 1} and the second projects it to {0 . . .m− 1}.

7

https://en.wikipedia.org/wiki/Modular_arithmetic

We can compute (11) for all prefixes hi = hp(x0 . . . xi) without explicitly computing powers of p. First, we set u0 = 1
and ui = (ui−1p) mod m (Corollary (B.6)). Next, we set h0 = x0 and hi = (hi−1 + xiui) mod m (Lemma B.7).
While this takes O(n) time, we have for all i ≤ j (Lemma B.2)

hp(xi . . . xj)p
i = (hj − hi−1) mod m (12)

Thus if we precompute the modular multiplicative inverse p−i (which must exist since pi and m are coprime), we
can hash any substring xi . . . xj in O(1) time by (12).

A.3.1 Rabin-Karp algorithm

A more direct application of (12) is finding all occurrences of a string y of length ny in a string x of length nx

in O(nx + ny) (instead of the naive O(nxny)). This is the Rabin-Karp algorithm [3]. The code below is self-
explanatory. Note that it is possible to have false positives due to collisions but unlikely if m is sufficiently large.
We never have false negatives; the algorithm always captures all occurrences of y in x.

def vocab(c): return ord(c) - ord(’a’) + 1 # a...z -> 1...26

p = 31 # Prime roughly equal to vocab size 26

m = int(1e9 + 9) # Some large number > 26

def compute_hashes(x):

hashes = [vocab(x[0])]

for i in range(1, len(x)):

hashes.append((hashes[-1] + vocab(x[i]) * pow(p, i, m)) % m)

return hashes

def rabinkarp(x, y):

h = compute_hashes(x)

h_y = compute_hashes(y)[-1]

occ = []

for i in range(len(x) - len(y) + 1):

if h_y * pow(p, i, m) % m == (h[i + len(y) - 1] - (h[i - 1] if i > 0 else 0)) % m:

occ.append(i)

return occ

print(rabinkarp(’abcdddeebcdddaabdecdddebabcdddadcd’, ’cddda’)) # [9, 26]

B Lemmas

Lemma B.1. The function f : (0,∞)→ R defined by f(k) :=
(
1− e−

n
mk
)k

is minimized at k⋆ = (ln 2)mn , achieving

the minimum value f⋆ = 2−(ln 2)m
n .

Proof. By plotting f we see that it has a unique minimum over k ∈ (0,∞) even though it is highly nonlinear and
nonconvex (the purple line below, assuming n = m).

We may find the minimizer of g(k) = ln f(k) = k ln(1− e−
n
mk) instead (the red line above). Its derivative is

g′(k) = log
(
1− e−

n
mk
)
+

(
n
mk
)
e−

n
mk

1− e−
n
mk

8

Following the nonconvex analysis by Yuval Filmus, we use variable substitution z := e−
n
mk ∈ (0, 1) and minimize

g′ over z. Plugging in z and also
(
n
mk
)
= − ln z, we have

g′(z) =
(1− z) ln (1− z)− z ln z

1− z
=


> 0 for all z ∈ (0, 1

2)

= 0 for z = 1
2

< 0 for all z ∈ (12 , 1)

This means that f is monotonically increasing over 0 < z < 1
2 , stationary at z = 1

2 , and monotonically decreasing
over 1

2 < z < 1. Mapping back to k = −(ln z)mn , equivalently we have that f is monotonically decreasing over
0 < k < (ln 2)mn , stationary at k = (ln 2)mn , and monotonically increasing over k > (ln 2)mn . This implies that
k = (ln 2)mn is the unique minimizer of f over (0,∞).

Lemma B.2. Pick any i ≤ j in {0 . . . n− 1}. Then

hp(xi . . . xj)p
i = (hp(x0 . . . xj)− hp(x0 . . . xi−1)) mod m

Proof. We have from definition (11)

hp(xi . . . xj) = (xi + xi+1p+ · · ·+ xjp
j−i) mod m =

(
j∑

k=i

xkp
k−i

)
mod m

Thus hp(xi . . . xj) ≡
∑j

k=i xkp
k−i (mod m). Scaling by pi gives us hp(xi . . . xj)p

i ≡
∑j

k=i xkp
k (mod m). Using

(14) we have

hp(xi . . . xj)p
i =

(
j∑

k=0

xkp
k −

i−1∑
k=0

xkp
k

)
mod m

=

((
j∑

k=0

xkp
k mod m

)
−

(
i−1∑
k=0

xkp
k mod m

))
mod m

= (hp(x0 . . . xj)− hp(x0 . . . xi−1)) mod m

Lemma B.3.

(a+ b) mod m =
(
(a mod m) + (b mod m)

)
mod m (13)

(a− b) mod m =
(
(a mod m)− (b mod m)

)
mod m (14)

(ab) mod m =
(
(a mod m)(b mod m)

)
mod m (15)

Proof. We have
(
X mod m

)
≡ X (mod m) for any X. Congruence is symmetric, transitive, and compatible with

addition, subtraction, and multiplication, thus

(a+ b) mod m ≡ a+ b ≡
(
(a mod m) + (b mod m)

)
(mod m)

(a− b) mod m ≡ a− b ≡
(
(a mod m)− (b mod m)

)
(mod m)

(ab) mod m ≡ ab ≡
(
(a mod m)(b mod m)

)
(mod m)

Lemma B.4.

(a+ b) mod m =
(
(a mod m) + b

)
mod m (16)

(ab) mod m =
(
(a mod m)b

)
mod m (17)

9

https://cs.stackexchange.com/questions/132088/how-is-the-optimal-number-of-hashes-is-derived-in-bloom-filter

Proof. By applying (13) and (15) twice each:(
(a mod m) + b

)
mod m =

(
(a mod m) + (b mod m)

)
mod m =

(
a+ b

)
mod m(

(a mod m)b
)

mod m =
(
(a mod m)(b mod m)

)
mod m = (ab) mod m

Corollary B.5 (From Lemma B.4).(
n∑

i=1

ai

)
mod m =

(
· · ·
(
(a1 mod m) + a2

)
mod m

)
+ · · ·+ an

)
mod m (18)(

n∏
i=1

ai

)
mod m =

(
· · ·
(
(a1 mod m)a2

)
mod m

)
· · · an

)
mod m (19)

Corollary B.6 (From (19)). Define ui = pi mod m. The following procedure correctly computes ui (without
computing pi) for all i ∈ {0, 1, . . . , n− 1}:

• u0 ← 1

• For i = 1 . . . n− 1: ui ← (ui−1p) mod m.

Lemma B.7. For x = (x0 . . . xn−1) where xi < m,(
n−1∑
i=0

xip
i

)
mod m = ((· · · (((x0 + x1u1) mod m) + x2u2) mod m+ · · ·) + xn−1un−1) mod m

where ui = pi mod m.

Proof. By (18),(
n−1∑
i=0

xip
i

)
mod m = ((· · · (((x0 + x1p) mod m) + x2p

2) mod m+ · · ·) + xn−1p
n−1) mod m

The innermost term is

(x0 + x1p) mod m = ((x0 mod m) + (x1p mod m)) mod m (by (13))

= (x0 + (x1p mod m)) mod m (since x0 < m)

= (x0 + ((x1 mod m)(p mod m) mod m)) mod m (by (15))

= (x0 + (x1u1 mod m)) mod m (since x1 < m)

= (x0 + x1u1) mod m (by (13))

Similarly working through the next innermost terms, we have the statement.

Lemma B.8. Let ha(x) = (ax+b) mod m where a and m are coprime. Then ha cycles through some permutation
πa of {0 . . .m− 1} over Z.

Proof. For simplicity, assume b = 0 until the end of the proof (i.e., ha(x) = ax mod m). Since a and m are coprime,
there exists the (nonzero) modular multiplicative inverse a−1 of a. We show that ha is 1-to-1 and onto:

• 1-to-1: Pick any x ̸= y from {0 . . .m− 1} and suppose ha(x) = ha(y). Then

ax ≡ ay (mod m) ⇔ x ≡ y (mod m)

⇔ x = y

where the first equivalence follows by multiplication on both sides with a−1 and the second by the fact that
x, y ∈ {0 . . .m− 1}. Thus it must be that ha(x) ̸= ha(y).

10

https://cp-algorithms.com/algebra/module-inverse.html

• Onto: Pick any y ∈ {0 . . .m− 1}. Let x = a−1y mod m ∈ {0 . . .m− 1}. Then

ha(x) = a(a−1y mod m) mod m

= a(a−1y) mod m (by (17))

= y mod m

= y (since y ∈ {0 . . .m− 1})

Thus ha is bijective between {0 . . .m− 1} and {0 . . .m− 1} (i.e., a permutation). To show that ha forms a cycle
with period m, pick any x ∈ Z and note

ha(x+m) = (ax+ am) mod m

= ((ax mod m) + (am mod m)) mod m (by (13))

= ax mod m

= ha(x)

Finally, we note that using a nonzero bias term b ̸= 0 simply shifts this cycle.

11

	Set Membership
	Set Similarity
	MinHash
	Problem reformulation
	Random permutation
	Constructing the signature matrix

	MinHash LSH

	Sampling Without Replacement
	Reservoir Sampling
	Online shuffling

	Hash Functions
	Modular Arithmetic
	Hashing Integers
	Hashing Strings
	Rabin-Karp algorithm

	Lemmas

