Notes on Pegasos

Karl Stratos

1 Pegasos Algorithm

Given $x \in \mathbb{R}^d$ and $y \in \{\pm 1\}$, the per-example loss for a linear SVM and its gradient are

$$J_{x,y}(w) = \frac{\lambda}{2} ||w||^2 + \max(0, 1 - y \langle w, x \rangle)$$
$$\nabla J_{x,y}(w) = \lambda w - [[y \langle w, x \rangle < 1]] yx$$

where $\lambda > 0$ is a strictly positive regularization strength and [[A]] is 1 if A is true and 0 otherwise. The Pegasos algorithm (Shalev-Shwartz *et al.*, 2011) is "just" a stochastic (sub)gradient descent on this loss with a paricular choice of learning rate: $\eta_t = 1/(\lambda t)$. With this choice, the *t*-th update on an example (x_{i_t}, y_{i_t}) becomes

$$\begin{split} w_{t+1} &= w_t - \eta_t \nabla J(w_t) \\ &= w_t - \eta_t \left(\lambda w_t - \left[\left[y_{i_t} \left\langle w_t, x_{i_t} \right\rangle < 1 \right] \right] y_{i_t} x_{i_t} \right) \\ &= w_t - \frac{1}{t} w_t + \frac{1}{\lambda t} \left[\left[y_{i_t} \left\langle w_t, x_{i_t} \right\rangle < 1 \right] \right] y_{i_t} x_{i_t} \\ &= \left(\frac{t-1}{t} \right) w_t + \frac{1}{\lambda t} v_t \end{split}$$

where we define $v_t = [[y_{i_t} \langle w_t, x_{i_t} \rangle < 1]] y_{i_t} x_{i_t}$. Unwinding the expression from an initial parameter of zeros reveals a strikingly simple form:

$$w_{1} = 0_{d}$$

$$w_{2} = \frac{1}{\lambda}v_{1}$$

$$w_{3} = \frac{1}{2}\left(\frac{1}{\lambda}v_{1}\right) + \frac{1}{2\lambda}v_{2} = \frac{1}{2\lambda}(v_{1} + v_{2})$$

$$w_{4} = \frac{2}{3}\left(\frac{1}{2\lambda}(v_{1} + v_{2})\right) + \frac{1}{3\lambda}v_{3} = \frac{1}{3\lambda}(v_{1} + v_{2} + v_{3})$$

$$w_{t+1} = \frac{1}{t\lambda}\sum_{l=1}^{t}v_{l} \qquad \forall t \ge 1 \qquad (1)$$

Now consider N training examples $(x_1, y_1) \dots (x_N, y_N) \in \mathbb{R}^d \times \{\pm 1\}$ and for step $t = 1, 2, \dots, T$ draw an example $i_t \in \{1 \dots N\}$ arbitrarily. Then the update (1) is equivalent to

$$w_{t+1} = \frac{1}{t\lambda} \sum_{i=1}^{N} \alpha(i, t) y_i x_i \tag{2}$$

where $\alpha(i,t) = \sum_{l=1}^{t} [[y_i \langle w_t, x_i \rangle < 1]]$ is the number of times the margin constraint has been violated on the *i*-th example at the *t*-th update.

1.1 Kernelized Pegasos

A highlight of the form of update (2) is that it allows for an alternative training scheme: instead of updating the parameter w_t , update the violation counts $\alpha(i, t)$ since this is sufficient to extract the final trained parameter. Formulating training as counting violations also yields a kernelized version. Let $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a Mercer kernel with an implicit feature function $\phi : \mathbb{R}^d \to \mathcal{F}$ such that $K(x, z) = \langle \phi(x), \phi(z) \rangle$. The conceptual parameter value is, for any $t \ge 1$,

$$w_{t+1} = \frac{1}{t\lambda} \sum_{i=1}^{N} \alpha(i, t) y_i \phi(x_i) \in \mathcal{F}$$

Its prediction on $x \in \mathbb{R}^d$ is the sign of

$$\langle w_{t+1}, \phi(x) \rangle = \frac{1}{t\lambda} \sum_{i=1}^{N} \alpha(i, t) y_i \left\langle \phi(x_i), \phi(x) \right\rangle = \frac{1}{t\lambda} \sum_{i=1}^{N} \alpha(i, t) y_i K(x_i, x) \in \mathbb{R}$$

Therefore we never have to store the parameter or the features in training or inference. More specifically:

Training. Given $(x_1, y_1) \dots (x_N, y_N) \in \mathbb{R}^d \times \{\pm 1\}$, initialize $\alpha = 0_N$. For $t = 1 \dots T$, draw $i_t \in \{1 \dots N\}$ and set

$$\alpha_{i_t} \leftarrow \begin{cases} \alpha_{i_t} + 1 & \text{if } y_{i_t} \left(\frac{1}{t\lambda} \sum_{j=1}^N \alpha_j y_j K(x_j, x_{i_t}) \right) < 1 \\ \alpha_{i_t} & \text{otherwise} \end{cases}$$

Inference. Given $x \in \mathbb{R}^d$, predict

$$\hat{y} = \mathbf{sign}\left(\sum_{i=1}^N \alpha_i y_i K(x_i, x)\right)$$

Note that we can ignore the scaling factor $1/((T+1)\lambda)$ since it does not affect the sign.

2 Convergence Analysis

Stochastic (sub)gradient descent with learning rate $\eta_t = 1/(\lambda t)$ turns out to be also amenable to convergence analysis. We will assume a general setting in which for t = 1...T, we are presented with a λ -strongly convex (sub-differentiable) function $f_t : \mathbb{R}^d \to \mathbb{R}$ to minimize. That is, given any $w \in \mathbb{R}^d$

$$f_t(u) \ge f_t(w) + \langle \nabla f_t(w), u - w \rangle + \frac{\lambda}{2} ||w - u||^2 \qquad \forall u \in \mathbb{R}^d$$
(3)

(i.e., the linear approximation of f_t around w is a *strict* lower bound).

Lemma 2.1. Pick $w^{(1)} \in \mathbb{R}^d$ arbitrarily and define $w_{t+1} = w_t - \eta_t \nabla f_t(w_t)$ for $t = 1 \dots T$. If $\eta_t = 1/(\lambda t)$,

$$\frac{1}{T}\sum_{t=1}^{T}f_t(w_t) \le \frac{1}{T}\sum_{t=1}^{T}f_t(u) + \frac{G_{\max}^2(1+\log T)}{2\lambda T} \qquad \forall u \in \mathbb{R}^d$$

where $G_{\max} = \max_{t=1}^{T} ||\nabla f_t(w_t)||$ is the largest norm of the gradient during training.

Proof. From (3) it follows that

$$\left\langle \nabla f_t(w_t), w_t - u \right\rangle \ge f_t(w_t) - f_t(u) + \frac{\lambda}{2} \left\| w_t - u \right\|^2 \qquad \forall u \in \mathbb{R}^d$$

$$\tag{4}$$

We will relate the LHS to the following expression, which is amenable to the telescoping sum.

$$||w_{t} - u||^{2} - ||w_{t+1} - u||^{2} = ||w_{t} - u||^{2} - ||w_{t} - u - \eta_{t} \nabla f_{t}(w_{t})||^{2}$$

$$= 2\eta_{t} \langle \nabla f_{t}(w_{t}), w_{t} - u \rangle - \eta_{t}^{2} ||\nabla f_{t}(w_{t})||^{2}$$

$$\Leftrightarrow \quad \langle \nabla f_{t}(w_{t}), w_{t} - u \rangle = \frac{||w_{t} - u||^{2} - ||w_{t+1} - u||^{2}}{2\eta_{t}} + \frac{\eta_{t} ||\nabla f_{t}(w_{t})||^{2}}{2}$$
(5)

Combining (4) and (5) gives

$$f_t(w_t) - f_t(u) \le \frac{||w_t - u||^2 - ||w_{t+1} - u||^2}{2\eta_t} - \frac{\lambda}{2} ||w_t - u||^2 + \frac{\eta_t ||\nabla f_t(w_t)||^2}{2} \qquad \forall u \in \mathbb{R}^d$$

Setting $\eta_t = 1/(\lambda t)$ gives

$$f_t(w_t) - f_t(u) \le \frac{\lambda}{2} \left((t-1) ||w_t - u||^2 - t ||w_{t+1} - u||^2 \right) + \frac{||\nabla f_t(w_t)||^2}{2\lambda t} \qquad \forall u \in \mathbb{R}^d$$

Since this holds for every $t = 1 \dots T$, we can sum both sides over t. Note that

$$\sum_{t=1}^{T} (t-1) ||w_t - u||^2 - t ||w_{t+1} - u||^2 = -||w_2 - u||^2 + ||w_2 - u||^2 - 2 ||w_3 - u||^2 + \dots - T ||w_{T+1} - u||^2$$
$$= -T ||w_{T+1} - u||^2$$

Also,

$$\sum_{t=1}^{T} \frac{\left|\left|\nabla f_t(w_t)\right|\right|^2}{2\lambda t} \leq \frac{G_{\max}^2}{2\lambda} \sum_{t=1}^{T} \frac{1}{t} \leq \frac{G_{\max}^2(1+\log T)}{2\lambda}$$

where we use the fact that the partial sums of the harmonic series have logarithmic growh (Wikipedia). Thus for all $u \in \mathbb{R}^d$:

$$\sum_{t=1}^{T} f_t(w_t) - f_t(u) \le -\frac{\lambda T}{2} ||w_{T+1} - u||^2 + \frac{G_{\max}^2(1 + \log T)}{2\lambda}$$
$$\le \frac{G_{\max}^2(1 + \log T)}{2\lambda}$$
$$\Leftrightarrow \quad \frac{1}{T} \sum_{t=1}^{T} f_t(w_t) \le \frac{1}{T} \sum_{t=1}^{T} f_t(u) + \frac{G_{\max}^2(1 + \log T)}{2\lambda T}$$

2.1 Application

Let us apply Lemma 2.1 to optimizing the SVM loss with Pegasos. We can in fact consider a more general minibatch version: for $t = 1 \dots T$ draw some $B_t \subseteq \{1 \dots N\}$ and take a subgradient step on

$$J_{B_t}(w) = \frac{\lambda}{2} ||w||^2 + \frac{1}{|B_t|} \sum_{i \in B_t} \max(0, 1 - y_i \langle w, x_i \rangle)$$

with learning rate $1/(\lambda t)$. J_{B_t} is λ -strongly convex. Let $R = \max_{i=1}^N ||x_i||$ and note that

$$\nabla J_{B_t}(w_t) = \lambda w_t - v_t \qquad \qquad v_t = \frac{1}{|B_t|} \sum_{i \in B_t} \left[\left[y_i \left\langle w_t, x_i \right\rangle < 1 \right] \right] y_i x_i$$
$$||\nabla J_{B_t}(w_t)|| \le \lambda \left| |w_t| \right| + ||v_t|| \le \lambda \left(\frac{R}{\lambda}\right) + R \le 2R$$

where the first inequality is the triangle inequality $||u+v|| \le ||u|| + ||v||$ and the second inequality follows from the fact that $w_{t+1} = \frac{1}{t\lambda} \sum_{l=1}^{t} v_l$ (minibatch version of (1)). So by Lemma 2.1,

$$\frac{1}{T}\sum_{t=1}^{T}J_{B_t}(w_t) \le \frac{1}{T}\sum_{t=1}^{T}J_{B_t}(u) + \frac{2R^2(1+\log T)}{\lambda T}$$
(6)

for any $u \in \mathbb{R}^d$. In particular, we can set u to be the optimal parameter of the full loss $w^* = \arg\min_{w \in \mathbb{R}^d} J(w)$ where $J(w) = J_{\{1...N\}}(w)$. But this analysis is a bit unsatisfying because it only bounds the average loss across updates rather than the loss of a single model. One quick fix is to set $B_t = \{1 \dots N\}$ (i.e., full subgradient descent) so that $J(w) = J_{B_t}(w)$ for all t. Let $\bar{w} = (1/T) \sum_{t=1}^T w_t$ denote the average parameter. Then

$$J(\bar{w}) \leq \frac{1}{T} \sum_{t=1}^{T} J(w_t) \qquad \text{(by the convexity of } J)$$
$$= \frac{1}{T} \sum_{t=1}^{T} J_{B_t}(w_t) \qquad \text{(since } B_t = \{1 \dots N\} \text{ for all } t)$$
$$\leq \frac{1}{T} \sum_{t=1}^{T} J_{B_t}(w^*) + \frac{2R^2(1 + \log T)}{\lambda T} \qquad \text{(by (6))}$$
$$= J(w^*) + \frac{2R^2(1 + \log T)}{\lambda T} \qquad \text{(since } B_t = \{1 \dots N\} \text{ for all } t)$$

If $B_t \neq \{1...N\}$ this argument does not hold in general. However, it is possible to show that even in this case it holds if B_t is sampled uniformly at random from $\{1...N\}$ (with or without replacement) with high probability with slightly worse constants (Kakade and Tewari, 2009).

References

- Kakade, S. M. and Tewari, A. (2009). On the generalization ability of online strongly convex programming algorithms. In Advances in Neural Information Processing Systems, pages 801–808.
- Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A. (2011). Pegasos: Primal estimated sub-gradient solver for svm. *Mathematical programming*, 127(1), 3–30.