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1 Pegasos Algorithm

Given x ∈ Rd and y ∈ {±1}, the per-example loss for a linear SVM and its gradient are

Jx,y(w) =
λ

2
||w||2 + max(0, 1− y 〈w, x〉)

∇Jx,y(w) = λw − [[y 〈w, x〉 < 1]] yx

where λ > 0 is a strictly positive regularization strength and [[A]] is 1 if A is true and 0 otherwise. The Pegasos
algorithm (Shalev-Shwartz et al., 2011) is “just” a stochastic (sub)gradient descent on this loss with a paricular
choice of learning rate: ηt = 1/(λt). With this choice, the t-th update on an example (xit , yit) becomes

wt+1 = wt − ηt∇J(wt)

= wt − ηt (λwt − [[yit 〈wt, xit〉 < 1]] yitxit)

= wt −
1

t
wt +

1

λt
[[yit 〈wt, xit〉 < 1]] yitxit

=

(
t− 1

t

)
wt +

1

λt
vt

where we define vt = [[yit 〈wt, xit〉 < 1]] yitxit . Unwinding the expression from an initial parameter of zeros reveals
a strikingly simple form:

w1 = 0d

w2 =
1

λ
v1

w3 =
1

2

(
1

λ
v1

)
+

1

2λ
v2 =

1

2λ
(v1 + v2)

w4 =
2

3

(
1

2λ
(v1 + v2)

)
+

1

3λ
v3 =

1

3λ
(v1 + v2 + v3)

wt+1 =
1

tλ

t∑
l=1

vl ∀t ≥ 1 (1)

Now consider N training examples (x1, y1) . . . (xN , yN ) ∈ Rd × {±1} and for step t = 1, 2, . . . , T draw an example
it ∈ {1 . . . N} arbitrarily. Then the update (1) is equivalent to

wt+1 =
1

tλ

N∑
i=1

α(i, t)yixi (2)

where α(i, t) =
∑t
l=1 [[yi 〈wt, xi〉 < 1]] is the number of times the margin constraint has been violated on the i-th

example at the t-th update.

1.1 Kernelized Pegasos

A highlight of the form of update (2) is that it allows for an alternative training scheme: instead of updating
the parameter wt, update the violation counts α(i, t) since this is sufficient to extract the final trained parameter.
Formulating training as counting violations also yields a kernelized version. Let K : Rd × Rd → R be a Mercer
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kernel with an implicit feature function φ : Rd → F such that K(x, z) = 〈φ(x), φ(z)〉. The conceptual parameter
value is, for any t ≥ 1,

wt+1 =
1

tλ

N∑
i=1

α(i, t)yiφ(xi) ∈ F

Its prediction on x ∈ Rd is the sign of

〈wt+1, φ(x)〉 =
1

tλ

N∑
i=1

α(i, t)yi 〈φ(xi), φ(x)〉 =
1

tλ

N∑
i=1

α(i, t)yiK(xi, x) ∈ R

Therefore we never have to store the parameter or the features in training or inference. More specifically:

Training. Given (x1, y1) . . . (xN , yN ) ∈ Rd × {±1}, initialize α = 0N . For t = 1 . . . T , draw it ∈ {1 . . . N} and set

αit ←

{
αit + 1 if yit

(
1
tλ

∑N
j=1 αjyjK(xj , xit)

)
< 1

αit otherwise

Inference. Given x ∈ Rd, predict

ŷ = sign

(
N∑
i=1

αiyiK(xi, x)

)

Note that we can ignore the scaling factor 1/((T + 1)λ) since it does not affect the sign.

2 Convergence Analysis

Stochastic (sub)gradient descent with learning rate ηt = 1/(λt) turns out to be also amenable to convergence
analysis. We will assume a general setting in which for t = 1 . . . T , we are presented with a λ-strongly convex
(sub-differentiable) function ft : Rd → R to minimize. That is, given any w ∈ Rd

ft(u) ≥ ft(w) + 〈∇ft(w), u− w〉+
λ

2
||w − u||2 ∀u ∈ Rd (3)

(i.e., the linear approximation of ft around w is a strict lower bound).

Lemma 2.1. Pick w(1) ∈ Rd arbitrarily and define wt+1 = wt − ηt∇ft(wt) for t = 1 . . . T . If ηt = 1/(λt),

1

T

T∑
t=1

ft(wt) ≤
1

T

T∑
t=1

ft(u) +
G2

max(1 + log T )

2λT
∀u ∈ Rd

where Gmax = maxTt=1 ||∇ft(wt)|| is the largest norm of the gradient during training.

Proof. From (3) it follows that

〈∇ft(wt), wt − u〉 ≥ ft(wt)− ft(u) +
λ

2
||wt − u||2 ∀u ∈ Rd (4)

We will relate the LHS to the following expression, which is amenable to the telescoping sum.

||wt − u||2 − ||wt+1 − u||2 = ||wt − u||2 − ||wt − u− ηt∇ft(wt)||2

= 2ηt 〈∇ft(wt), wt − u〉 − η2t ||∇ft(wt)||
2

⇔ 〈∇ft(wt), wt − u〉 =
||wt − u||2 − ||wt+1 − u||2

2ηt
+
ηt ||∇ft(wt)||2

2
(5)

2



Combining (4) and (5) gives

ft(wt)− ft(u) ≤ ||wt − u||
2 − ||wt+1 − u||2

2ηt
− λ

2
||wt − u||2 +

ηt ||∇ft(wt)||2

2
∀u ∈ Rd

Setting ηt = 1/(λt) gives

ft(wt)− ft(u) ≤ λ

2

(
(t− 1) ||wt − u||2 − t ||wt+1 − u||2

)
+
||∇ft(wt)||2

2λt
∀u ∈ Rd

Since this holds for every t = 1 . . . T , we can sum both sides over t. Note that

T∑
t=1

(t− 1) ||wt − u||2 − t ||wt+1 − u||2 = − ||w2 − u||2 + ||w2 − u||2 − 2 ||w3 − u||2 + · · · − T ||wT+1 − u||2

= −T ||wT+1 − u||2

Also,

T∑
t=1

||∇ft(wt)||2

2λt
≤ G2

max

2λ

T∑
t=1

1

t
≤ G2

max(1 + log T )

2λ

where we use the fact that the partial sums of the harmonic series have logarithmic growh (Wikipedia). Thus for
all u ∈ Rd:

T∑
t=1

ft(wt)− ft(u) ≤ −λT
2
||wT+1 − u||2 +

G2
max(1 + log T )

2λ

≤ G2
max(1 + log T )

2λ

⇔ 1

T

T∑
t=1

ft(wt) ≤
1

T

T∑
t=1

ft(u) +
G2

max(1 + log T )

2λT

2.1 Application

Let us apply Lemma 2.1 to optimizing the SVM loss with Pegasos. We can in fact consider a more general minibatch
version: for t = 1 . . . T draw some Bt ⊆ {1 . . . N} and take a subgradient step on

JBt
(w) =

λ

2
||w||2 +

1

|Bt|
∑
i∈Bt

max(0, 1− yi 〈w, xi〉)

with learning rate 1/(λt). JBt is λ-strongly convex. Let R = maxNi=1 ||xi|| and note that

∇JBt
(wt) = λwt − vt vt =

1

|Bt|
∑
i∈Bt

[[yi 〈wt, xi〉 < 1]] yixi

||∇JBt
(wt)|| ≤ λ ||wt||+ ||vt|| ≤ λ

(
R

λ

)
+R ≤ 2R

where the first inequality is the triangle inequality ||u+ v|| ≤ ||u||+ ||v|| and the second inequality follows from the
fact that wt+1 = 1

tλ

∑t
l=1 vl (minibatch version of (1)). So by Lemma 2.1,

1

T

T∑
t=1

JBt
(wt) ≤

1

T

T∑
t=1

JBt
(u) +

2R2(1 + log T )

λT
(6)

for any u ∈ Rd. In particular, we can set u to be the optimal parameter of the full loss w∗ = arg minw∈Rd J(w)
where J(w) = J{1...N}(w). But this analysis is a bit unsatisfying because it only bounds the average loss across
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updates rather than the loss of a single model. One quick fix is to set Bt = {1 . . . N} (i.e., full subgradient descent)

so that J(w) = JBt
(w) for all t. Let w̄ = (1/T )

∑T
t=1 wt denote the average parameter. Then

J(w̄) ≤ 1

T

T∑
t=1

J(wt) (by the convexity of J)

=
1

T

T∑
t=1

JBt
(wt) (since Bt = {1 . . . N} for all t)

≤ 1

T

T∑
t=1

JBt
(w∗) +

2R2(1 + log T )

λT
(by (6))

= J(w∗) +
2R2(1 + log T )

λT
(since Bt = {1 . . . N} for all t)

If Bt 6= {1 . . . N} this argument does not hold in general. However, it is possible to show that even in this case
it holds if Bt is sampled uniformly at random from {1 . . . N} (with or without replacement) with high probability
with slightly worse constants (Kakade and Tewari, 2009).
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