
Notes on Pegasos

Karl Stratos

1 Pegasos Algorithm

Given x ∈ Rd and y ∈ {±1}, the per-example loss for a linear SVM and its gradient are

Jx,y(w) =
λ

2
||w||2 + max(0, 1− y 〈w, x〉)

∇Jx,y(w) = λw − [[y 〈w, x〉 < 1]] yx

where λ > 0 is a strictly positive regularization strength and [[A]] is 1 if A is true and 0 otherwise. The Pegasos
algorithm (Shalev-Shwartz et al., 2011) is “just” a stochastic (sub)gradient descent on this loss with a paricular
choice of learning rate: ηt = 1/(λt). With this choice, the t-th update on an example (xit , yit) becomes

wt+1 = wt − ηt∇J(wt)

= wt − ηt (λwt − [[yit 〈wt, xit〉 < 1]] yitxit)

= wt −
1

t
wt +

1

λt
[[yit 〈wt, xit〉 < 1]] yitxit

=

(
t− 1

t

)
wt +

1

λt
vt

where we define vt = [[yit 〈wt, xit〉 < 1]] yitxit . Unwinding the expression from an initial parameter of zeros reveals
a strikingly simple form:

w1 = 0d

w2 =
1

λ
v1

w3 =
1

2

(
1

λ
v1

)
+

1

2λ
v2 =

1

2λ
(v1 + v2)

w4 =
2

3

(
1

2λ
(v1 + v2)

)
+

1

3λ
v3 =

1

3λ
(v1 + v2 + v3)

wt+1 =
1

tλ

t∑
l=1

vl ∀t ≥ 1 (1)

Now consider N training examples (x1, y1) . . . (xN , yN) ∈ Rd × {±1} and for step t = 1, 2, . . . , T draw an example
it ∈ {1 . . . N} arbitrarily. Then the update (1) is equivalent to

wt+1 =
1

tλ

N∑
i=1

α(i, t)yixi (2)

where α(i, t) =
∑t
l=1 [[yi 〈wt, xi〉 < 1]] is the number of times the margin constraint has been violated on the i-th

example at the t-th update.

1.1 Kernelized Pegasos

A highlight of the form of update (2) is that it allows for an alternative training scheme: instead of updating
the parameter wt, update the violation counts α(i, t) since this is sufficient to extract the final trained parameter.
Formulating training as counting violations also yields a kernelized version. Let K : Rd × Rd → R be a Mercer

1

kernel with an implicit feature function φ : Rd → F such that K(x, z) = 〈φ(x), φ(z)〉. The conceptual parameter
value is, for any t ≥ 1,

wt+1 =
1

tλ

N∑
i=1

α(i, t)yiφ(xi) ∈ F

Its prediction on x ∈ Rd is the sign of

〈wt+1, φ(x)〉 =
1

tλ

N∑
i=1

α(i, t)yi 〈φ(xi), φ(x)〉 =
1

tλ

N∑
i=1

α(i, t)yiK(xi, x) ∈ R

Therefore we never have to store the parameter or the features in training or inference. More specifically:

Training. Given (x1, y1) . . . (xN , yN) ∈ Rd × {±1}, initialize α = 0N . For t = 1 . . . T , draw it ∈ {1 . . . N} and set

αit ←

{
αit + 1 if yit

(
1
tλ

∑N
j=1 αjyjK(xj , xit)

)
< 1

αit otherwise

Inference. Given x ∈ Rd, predict

ŷ = sign

(
N∑
i=1

αiyiK(xi, x)

)

Note that we can ignore the scaling factor 1/((T + 1)λ) since it does not affect the sign.

2 Convergence Analysis

Stochastic (sub)gradient descent with learning rate ηt = 1/(λt) turns out to be also amenable to convergence
analysis. We will assume a general setting in which for t = 1 . . . T , we are presented with a λ-strongly convex
(sub-differentiable) function ft : Rd → R to minimize. That is, given any w ∈ Rd

ft(u) ≥ ft(w) + 〈∇ft(w), u− w〉+
λ

2
||w − u||2 ∀u ∈ Rd (3)

(i.e., the linear approximation of ft around w is a strict lower bound).

Lemma 2.1. Pick w(1) ∈ Rd arbitrarily and define wt+1 = wt − ηt∇ft(wt) for t = 1 . . . T . If ηt = 1/(λt),

1

T

T∑
t=1

ft(wt) ≤
1

T

T∑
t=1

ft(u) +
G2

max(1 + log T)

2λT
∀u ∈ Rd

where Gmax = maxTt=1 ||∇ft(wt)|| is the largest norm of the gradient during training.

Proof. From (3) it follows that

〈∇ft(wt), wt − u〉 ≥ ft(wt)− ft(u) +
λ

2
||wt − u||2 ∀u ∈ Rd (4)

We will relate the LHS to the following expression, which is amenable to the telescoping sum.

||wt − u||2 − ||wt+1 − u||2 = ||wt − u||2 − ||wt − u− ηt∇ft(wt)||2

= 2ηt 〈∇ft(wt), wt − u〉 − η2t ||∇ft(wt)||
2

⇔ 〈∇ft(wt), wt − u〉 =
||wt − u||2 − ||wt+1 − u||2

2ηt
+
ηt ||∇ft(wt)||2

2
(5)

2

Combining (4) and (5) gives

ft(wt)− ft(u) ≤ ||wt − u||
2 − ||wt+1 − u||2

2ηt
− λ

2
||wt − u||2 +

ηt ||∇ft(wt)||2

2
∀u ∈ Rd

Setting ηt = 1/(λt) gives

ft(wt)− ft(u) ≤ λ

2

(
(t− 1) ||wt − u||2 − t ||wt+1 − u||2

)
+
||∇ft(wt)||2

2λt
∀u ∈ Rd

Since this holds for every t = 1 . . . T , we can sum both sides over t. Note that

T∑
t=1

(t− 1) ||wt − u||2 − t ||wt+1 − u||2 = − ||w2 − u||2 + ||w2 − u||2 − 2 ||w3 − u||2 + · · · − T ||wT+1 − u||2

= −T ||wT+1 − u||2

Also,

T∑
t=1

||∇ft(wt)||2

2λt
≤ G2

max

2λ

T∑
t=1

1

t
≤ G2

max(1 + log T)

2λ

where we use the fact that the partial sums of the harmonic series have logarithmic growh (Wikipedia). Thus for
all u ∈ Rd:

T∑
t=1

ft(wt)− ft(u) ≤ −λT
2
||wT+1 − u||2 +

G2
max(1 + log T)

2λ

≤ G2
max(1 + log T)

2λ

⇔ 1

T

T∑
t=1

ft(wt) ≤
1

T

T∑
t=1

ft(u) +
G2

max(1 + log T)

2λT

2.1 Application

Let us apply Lemma 2.1 to optimizing the SVM loss with Pegasos. We can in fact consider a more general minibatch
version: for t = 1 . . . T draw some Bt ⊆ {1 . . . N} and take a subgradient step on

JBt
(w) =

λ

2
||w||2 +

1

|Bt|
∑
i∈Bt

max(0, 1− yi 〈w, xi〉)

with learning rate 1/(λt). JBt is λ-strongly convex. Let R = maxNi=1 ||xi|| and note that

∇JBt
(wt) = λwt − vt vt =

1

|Bt|
∑
i∈Bt

[[yi 〈wt, xi〉 < 1]] yixi

||∇JBt
(wt)|| ≤ λ ||wt||+ ||vt|| ≤ λ

(
R

λ

)
+R ≤ 2R

where the first inequality is the triangle inequality ||u+ v|| ≤ ||u||+ ||v|| and the second inequality follows from the
fact that wt+1 = 1

tλ

∑t
l=1 vl (minibatch version of (1)). So by Lemma 2.1,

1

T

T∑
t=1

JBt
(wt) ≤

1

T

T∑
t=1

JBt
(u) +

2R2(1 + log T)

λT
(6)

for any u ∈ Rd. In particular, we can set u to be the optimal parameter of the full loss w∗ = arg minw∈Rd J(w)
where J(w) = J{1...N}(w). But this analysis is a bit unsatisfying because it only bounds the average loss across

3

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)#Rate_of_divergence

updates rather than the loss of a single model. One quick fix is to set Bt = {1 . . . N} (i.e., full subgradient descent)

so that J(w) = JBt
(w) for all t. Let w̄ = (1/T)

∑T
t=1 wt denote the average parameter. Then

J(w̄) ≤ 1

T

T∑
t=1

J(wt) (by the convexity of J)

=
1

T

T∑
t=1

JBt
(wt) (since Bt = {1 . . . N} for all t)

≤ 1

T

T∑
t=1

JBt
(w∗) +

2R2(1 + log T)

λT
(by (6))

= J(w∗) +
2R2(1 + log T)

λT
(since Bt = {1 . . . N} for all t)

If Bt 6= {1 . . . N} this argument does not hold in general. However, it is possible to show that even in this case
it holds if Bt is sampled uniformly at random from {1 . . . N} (with or without replacement) with high probability
with slightly worse constants (Kakade and Tewari, 2009).

References

Kakade, S. M. and Tewari, A. (2009). On the generalization ability of online strongly convex programming algo-
rithms. In Advances in Neural Information Processing Systems, pages 801–808.

Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A. (2011). Pegasos: Primal estimated sub-gradient solver
for svm. Mathematical programming , 127(1), 3–30.

4

	Pegasos Algorithm
	Kernelized Pegasos

	Convergence Analysis
	Application

