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1 PAC Learning

How can we formalize the “inherent difficulty” of a learning problem? To answer this
question, we consider a simple setting. Let C be the concept class we’re interested
in learning, where each concept c : X → {±1} is a binary classifier of inputs x ∈ X .
Now, there is an input distribution D over X . This enables us to sample input
x ∼ X according to D.

Definition 1.1 (Learning problem). We know the concept class C. There is some
target concept c ∈ C we wish to learn. We don’t know c, but we can request m
iid examples x(1) . . . x(m) ∼ D labeled by c (aka. training data). Denote the set
of m labeled examples by S =

{(
x(i), c

(
x(i)
))}m

i=1
. After observing S, we pick a

hypothesis hS ∈ C that we think is c. The problem is to find a hypothesis with small
generalization error, defined as:

Px∼D (hS(x) 6= c(x))

The relation between generalization error and m tells us how hard it is to learn c. If
the target concept is hard, we will need a lot of labeled examples S before hS has
small generalization error. This suggests that we might want to define the learnability
of a concept class C as something like:

• C is learnable if for any c ∈ C and D we can achieve generalization error
Px∼D (hS(x) 6= c(x)) ≤ ε with m = |S| polynomial in 1/ε.

But we can’t make such a deterministic statement on Px∼D (hS(x) 6= c(x)) because S
is a random variable! This naturally leads to a soft statement on the error known as
PAC (Probably Approximately Correct) learnability.

Definition 1.2 (PAC learnablility). A concept class C is PAC learnable if there
exist some algorithm A and a polynomial function poly(·) such that the following holds.
Pick any target concept c ∈ C. Pick any input distribution D over X . Pick any
ε, δ ∈ [0, 1]. Define S :=

{(
x(i), c

(
x(i)
))}m

i=1
where x(i) ∼ D are iid samples. Given

m ≥ poly(1/ε, 1/δ, dim(X ), size(c)), where dim(X ), size(c) denote the computational
costs of representing inputs x ∈ X and target c, the generalization error of hS ← A(S)
is bounded as

Px∼D (hS(x) 6= c(x)) ≤ ε

with probability at least 1− δ (wrt the randomness in S).

This is an extremely robust statement on learnability. No matter how adversarial the
setting is (i.e., we can freely choose a target c ∈ C and an input distribution D to
hamper the learner), the algorithm A must be able to reduce the generalization error
arbitrarily small with a number of labeled examples only polynomial in the quantities

1



related to the desired accuracy (ε) and confidence (1− δ). Note that this is a nested
probability statement. To make it explicit, we can equivalently write

PS (Px∼D (hS(x) 6= c(x)) ≤ ε) ≥ 1− δ (1)

or PS (Px∼D (hS(x) 6= c(x)) > ε) < δ.

2 Example: Rectangles in R2

The only way to understand PAC learnability is through an example. A classical
example is the concept class of rectangles, where each rectangle maps a point on the
plane x ∈ R2 to +1 if it’s in the rectangle and −1 otherwise. Unfortunately, showing
that this class is PAC learnable involves some rather subtle steps that I find are not
completely fleshed out in many textbooks (e.g., Mohri et al.), hence this note.

A rectangle on the plane can be expressed as a function cl,r,b,t : R2 → {±1} for some
l ≤ r and b ≤ t defined as

cl,r,b,t(x) :=

{
1 if x1 ∈ [l, r] and x2 ∈ [b, t]
−1 otherwise

Proposition 2.1. The rectangle concept class

C := {cl,r,b,t : l ≤ r, b ≤ t}

is PAC learnable.

How can we prove Proposition 2.1? We must provide some algorithm that, given
limited supervision, produces a hypothesis with small generalization error with high
probability. Here is one such algorithm, which simply picks the smallest rectangle
consistent with the given labeled data.

LearnRectangle
Input: m points

(
x(1), y(1)

)
. . .
(
x(m), y(m)

)
∈ Rd × {±1} labeled by some c ∈ C

• Assign

l′ ← max
i: y(i)=1

x
(i)
1 r′ ← min

i: y(i)=1
x
(i)
1

b′ ← max
i: y(i)=1

x
(i)
2 t′ ← min

i: y(i)=1
x
(i)
2

Output: cl′,r′,b′,t′ ∈ C

Remark This is a conservative algorithm: the output hypothesis can never make
false positives. False negatives may only occur in the region

RE := RT \RS

where RT = [l, r]× [b, t] is the area of the target rectangle and RS = [l′, r′]× [b′, t′] is
the area of the hypothesis rectangle. See Figure 1 for an illustration.
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Figure 1: The shaded area is the error region RE := RT \RS (mind the dotted lines).
For any distribution D over R2, the probability mass of RE is exactly the generaliza-
tion error Px∼D (hS(x) 6= c(x)) of hS ← LearnRectangle(S).

Lemma 2.1. Pick any target rectangle c ∈ C. Pick any input distribution D over R2.
Pick any ε, δ ∈ [0, 1]. Define S :=

{(
x(i), c

(
x(i)
))}m

i=1
where x(i) ∼ D are iid samples.

Given m ≥ (4/ε) ln(4/(1− δ)), the generalization error of hS ← LearnRectangle(S)
is bounded as

Px∼D (hS(x) 6= c(x)) ≤ ε

with probability at least 1− δ (wrt the randomness in S).

Proof. Let [l, r]× [b, t] denote the area of the target rectangle RT and define1

z1 := sup {z : P ([l, r]× [z, t]) ≥ ε/4}
z2 := sup {z : P ([z, r]× [b, t]) ≥ ε/4}
z3 := inf {z : P ([l, r]× [b, z]) ≥ ε/4}
z4 := inf {z : P ([l, z]× [b, t]) ≥ ε/4}

They define four subrectangles of RT each with probability mass at least ε/4:

RT,1 := [l, r]× [z1, t]

RT,2 := [z2, r]× [b, t]

RT,3 := [l, r]× [b, z3]

RT,4 := [l, z4]× [b, t]

The following are then subrectangles of RT each with probability mass at most ε/4:

RT,1 := [l, r]× (z1, t]

RT,2 := (z2, r]× [b, t]

RT,3 := [l, r]× [b, z3)

RT,4 := [l, z4)× [b, t]

1We assume P (RT ) ≥ ε: otherwise the proposition is already true.
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Now we are ready to give the main argument. Suppose the hypothesis rectangle RS

intersects RT,i for all i = 1 . . . 4. Then the error region RE := RT \RS must be inside⋃4
i=1RT,i (mind the bar—see Figure 1). Thus in this case,

P (RE) ≤ P

(
4⋃

i=1

RT,i

)
≤

4∑
i=1

P
(
RT,i

)
< ε

where the last inequality uses the upper bound P
(
RT,i

)
< ε/4. Contrapositively,

if P (RE) ≥ ε, then RS does not intersect RT,i for some i ∈ {1 . . . 4}. Thus the
probability of the event P (RE) ≥ ε (wrt S) can be bounded as

PS (P (RE) ≥ ε) ≤ PS (∃i : RS ∩RT,i = ∅)

≤
4∑

i=1

PS (RS ∩RT,i = ∅)

≤ 4
(

1− ε

4

)m
where the last inequality uses the lower bound P (RT,i) ≥ ε/4. The last term can
be further bounded by 4 exp(−mε/4) using the inequality 1 − x ≤ exp(−x), and we
want this to be at most 1− δ. Solving for m, we have that

m ≥ 4

ε
ln

(
4

1− δ

)
=⇒ PS (P (RE) ≥ ε) ≤ 1− δ

Thus the claim follows.

3 General Case

Fortunately, we don’t need to show the PAC learnability of each and every different
concept class. There are general results that allow us to avoid doing the hard work.
A high-level picture is the following:

• If the concept class is finite, m needed to obtain a PAC hypothesis is polynomi-
ally bounded in 1/δ, 1/ε, and log |C|. So if C is not extremely large, it is PAC
learnable. For instance, if C is all conjunctions of n Boolean variables, then
log |C| = log 3n = O(n) so it is PAC learnable.

• If the concept class is infinite, m needed to obtain a PAC hypothesis is polyno-
mially bounded in 1/δ, 1/ε, and a quantity α describing the complexity of C.
The quantity α is typically the Rademacher complexity or the VC dimension
of C in the literature.2 For instance, if C is all rectangles on the plane (the
example above), then VCdim(C) = 4 so it is PAC learnable. If C is all linear
classifiers in Rd, then VCdim(C) = d so it is PAC learnable.

For more details, see Morhi et al.

2This also handles finite concept classes C in the sense that VCdim(C) ≤ log2 |C|.
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