
Feedforward and recurrent neural networks

Karl Stratos

Broadly speaking, a “neural network” simply refers to a composition of linear and
nonlinear functions. We will review two most basic types of neural networks.

1 Feedforward neural networks

In feedfoward networks, messages are passed forward only. Cycles are forbidden.

1.1 Single-layer network

The parameter corresponding to the first (and the only) layer is W ∈ Rd1×d0 . Let
f : Rd1 → Rd1 be a differentiable function. Given an input x ∈ Rd0 , the network
outputs

y := f(Wx)

To train the network, we minimize a loss function l : Rd1 × Rd1 → R over labeled
examples (x, y).

1.1.1 Delta rule

The gradient of the squared loss l(x, y) := (1/2) ||y − x||2 with respect to W is

∂

∂W

(
1

2
||y − f(Wx)||2

)
=

(
(f(Wx)− y)� f ′(Wx)

)
x> (1)

where � is the entry-wise multiplication operator. This gradient formula is sometimes
called the “delta rule”.

1.1.2 Linear regression, logistic regression

The network computes linear regression if f(z) := z and l(x, y) := (1/2) ||y − x||2.

For output y ∈ {±1}, the network computes logistic regression if f(z) := 1/(1 +
exp(−z)) and l(x, y) := log(1 + exp(−yx)).1

1The network is known as the perceptron if f(z) := sign(z) and l(x, y) := [[x = y]]: it is usually
trained with the so-called “perceptron-style” algorithm whose updates look very similar to stochastic
gradient descent updates. It can be shown that the perceptron updates always achieve 100% accuracy
on the training data (if possible) within a bounded number of misclassifications. But the perceptron
updates cannot be derived directly from the delta rule, since f is not differentiable at 0.

1

1.2 Multi-layer network

A network with L layers has a parameter W (l) ∈ Rdl×dl−1 and a differentiable function
f (l) : Rdl → Rdl corresponding to the l-th layer. Given an input x ∈ Rd0 , the network
outputs

y := a(L)

where each a(l) ∈ Rdl is defined recursively from the base case a(0) := x as follows:

z(l) := W (l)a(l−1)

a(l) := f (l)(z(l))

Again, to train the network, we minimize a loss function l : RdL × RdL → R over
labeled examples (x, y).

1.2.1 Gradients of the squared loss

The gradient of the squared loss on (x, y) with respect to W (L) is

∂

∂W (L)

(
1

2

∣∣∣∣∣∣y − a(L)
∣∣∣∣∣∣2) =

((
a(L) − y

)
� f (L)′

(
z(L)

))(
a(L−1)

)>
(2)

Note that the form mirrors the delta rule (1) because a(L) = f (L)
(
W (L)a(L−1)

)
where

a(L−1) does not involve W (L). By defining the “error term”

δ(L) :=
(
a(L) − y

)
� f (L)′

(
z(L)

)
we can simplify (2) as δ(L)

(
a(L−1)

)>
. Similarly, the gradient with respect to W (l) for

l < L can be verified to be δ(l)
(
a(l−1)

)>
where

δ(l) := f (l)
′
(z(l))�

(
W (l+1)>δ(l+1)

)
Computing all gradients in a multi-layer network in this manner is commonly known
as “backpropagation”, which is just a special case of automatic differentiation. For
concreteness, here is the backpropagation algorithm for an L-layer feedforward net-
work with the squared loss:

BackpropationSquaredLoss
Input: labeled example (x, y) ∈ RdL × RdL , parameters {W (l)}Ll=1

Output: W (l) := ∂
∂W (l) (1/2)

∣∣∣∣y − a(L)
∣∣∣∣2 for l = 1 . . . L

(Feedforward phase)

• Set a(0) ← x, and for l = 1 . . . L compute:

z(l) ←W (l)a(l−1) a(l) ← f (l)(z(l))

(Backpropagation phase)

• Set δ(L) ←
(
a(L) − y

)
� f (L)′ (z(L)

)
, and for l = L− 1 . . . 1 compute:

δ(l) ← f (l)
′
(z(l))�

(
W (l+1)>δ(l+1)

)
• Set W (l) ← δ(l)

(
a(l−1)

)>
for l = 1 . . . L.

2

1.3 Example: language models

Let V be the number of distinct word types. The goal of a language model is to
estimate the probability of a word given its history/context.

1.3.1 Bengio et al. (2003)

Bengio et al. (2003) propose the following three-layer feedforward network. As input,
it receives binary vectors ex1

. . . exn
∈ {0, 1}V indicating an ordered sequence of n

words x1 . . . xn. As output, it produces u ∈ RV where uy is the probability of the
(n+ 1)-th word being y. The network is parametrized as follows:2

• Layer 1: matrix W (1) ∈ Rd1×V , identity function

• Layer 2: matrix W (2) ∈ Rd2×nd1 , entry-wise tanhi(z) = tanh(z)

• Layer 3: matrix W (3) ∈ RV×d2 , softmaxi(z) = exp(zi)/
∑

j exp(zj)

Then it defines the probability of word y following words x1 . . . xn as:

p(y|x1 . . . xn) = softmaxy

W (3)tanh

W (2)

W
(1)ex1

...
W (1)exn

 (3)

The parameters of the network can be estimated from a sequence of words x1 . . . xN
by maximizing the log likelihood:

max
W (1),W (2),W (3)

log

N∑
i=n+1

p(xi|xi−n . . . xi−1)

1.3.2 Mikolov et al. (2013)

Mikolov et al. (2013) further simplify the model of Bengio et al. (2003) and propose
the following continuous bag-of-words (CBOW) model. As input, it receives binary
vectors ex−m

. . . ex−1
, ex1

. . . exm
∈ {0, 1}V indicating m words to the left x−m . . . x−1

and m words to the right x1 . . . xm. As output, it produces u ∈ RV where uy is the
probability of the current word being y. The network is parametrized as follows:

• Layer 1: matrix W (1) ∈ Rd1×V , identity function

• Layer 2: matrix W (2) ∈ RV×d1 , softmaxi(z) = exp(zi)/
∑

j exp(zj)

Let x ∈ Rd1 be the x-th column of W (1). Let y ∈ Rd1 be the y-th row of W (2). Then
it defines the probability of word y given context words x−m . . . x−1 and x1 . . . xm as:

p(y|x−m . . . x−1, x1 . . . xm) = softmaxy

(
W (2)W (1)(ex−m

+ · · ·+ ex−1
+ ex1

+ · · ·+ exm
)
)

=
exp(y>(x−m + · · ·+ x−1 + x1 + · · ·+ xm)∑
y′ exp(y′

>
(x−m + · · ·+ x−1 + x1 + · · ·+ xm))

(4)

A variant of CBOW, known as the skip-gram model, has the same parameters but
defines the probability of a context word y given a current word x:

p(y|x) = f (2)y

(
W (2)W (1)ex

)
=

exp(y>x)∑
y′ exp(y′

>
x))

(5)

2The original version has an additional paramater linking layer 1 to 3.

3

1.3.3 Hierarchical softmax trick

All the above language models (3, 4, 5) have a softmax layer at the top, which means
that the complexity of computing gradients is O(V) due to normalization. In the
case of (4, 5), this complexity can be reduced to O(log V) with a trick known as the
“hierarchical softmax”. We will focus on the skip-gram model for illustration.

The trick assumes a binary tree over the vocabulary (thus the tree has V leaf nodes)
as an additional input. This tree defines a path from the root for each word y. Let
L(y) be the length of this path. For j = 1 . . . L(y)− 1, define:

dir(y, j + 1) :=

{
+1 if the (j + 1)-th node is the left child of the j-th node
−1 if the (j + 1)-th node is the right child of the j-th node

Instead of having a vector y ∈ Rd1 corresponding to each context word y as in (5),
we will have a vector corresponding to each internal node in the tree. Specifically,
for every word y in the vocabulary, for every j = 1 . . . L(y)− 1, we will have a vector
y(j) ∈ Rd1 corresponding to the j-th node in the path from the root to y. Then we
replace the definition of p(y|x) from the original softmax (5) with the following:

p(y|x) =

L(y)−1∏
j=1

σ(dir(y, j + 1)× y(j)>x) (6)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function. This particular construction
makes (6) a proper distribution. Express the binary tree as a set of spans S := {(i, j)}
where each (i, j) has an associated vector yi,j and a split point ki,j . Then it can be
seen that

∑
y p(y|x) = π(1, V) where π is computed recursively as follows:

π(i, j) :=

{
1 if i = j

σ(y>i,jx)π(i, ki,j) + σ(−y>i,jx)π(ki,j + 1, j) otherwise

Because σ(z) + σ(−z) = 1, each π(i, j) = 1.

2 Recurrent neural networks

In recurrent neural networks (RNNs), a notion of time is introduced. The input at
time step t depends on an output from time step t− 1.

2.1 Simple RNN

A simple RNN (eponymously named the “simple RNN”) has parameters W (1) ∈
Rd1×d0 , V (1) ∈ Rd1×m, and W (2) ∈ Rd2×d1 . Let f (1) : Rd1 → Rd1 and f (2) : Rd2 →
Rd2 be differentiable functions, and let h0 = 0 ∈ Rm. For time step t ≥ 1, it receives
input xt ∈ Rd0 and produces output yt ∈ Rd2 as

ht = f (1)
(
W (1)xt + V (1)ht−1

)
yt = f (2)

(
W (2)ht

)
Observe that if we fix V (1) = 0, we end up with a two-layer feedforward network at
each time step.

4

2.1.1 Training a simple RNN

At each time step t, the “unrolled” simple RNN for the input sequence (x1 . . . xt) and
the output yt is a giant feedforward network, namely:

yn = f (2)
(
W (2)f (1)

(
W (1)xT + · · ·+ V (1)f (1)

(
W (1)x1 + V (1)h0

)))
Thus we can perform backpropagation on this unrolled network. Note that unlike the
standard feedforward network, the gradient of W (1) will need to take into account
multiple instances of W (1).

Given a labeled sequence (x1, y1) . . . (xn, yn), we can control how much to unroll for
training. This is known as “backpropagation through time”.

BackpropationThroughTime
Input: (x1, y1) . . . (xn, yn), how much to unroll T ≤ n, RNN parameters

• Set h0 ← 0.

• For t = T . . . n,

– For t′ = t − T + 2 . . . t, unroll the RNN on ht−T , (xt−T+1 . . . xt′), and
yt′ and perform backpropagation.

– Store ht−T+1 (computed in the previous step).

If T = 1, backpropagation through time degenerates to standard backpropagation on:

yt = f (2)
(
W (2)f (1)

(
W (1)xt + V (1)ĥt

))
where ĥt is considered a constant input (so this network uses each parameter once).

A Derivative rules

Let f, g : R→ R be differentiable functions with first derivatives f ′, g′ : R→ R.

Product rule
∂

∂x
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)

Quotient rule
∂

∂x

(
f(x)

g(x)

)
=
f ′(x)g(x)− f(x)g′(x)

g2(x)

Chain rule
∂

∂x
f(g(x)) = f ′(g(x))g′(x)

5

