
Feedforward and recurrent neural networks

Karl Stratos

Broadly speaking, a “neural network” simply refers to a composition of linear and
nonlinear functions. We will review two most basic types of neural networks.

1 Feedforward neural networks

In feedfoward networks, messages are passed forward only. Cycles are forbidden.

1.1 Single-layer network

The parameter corresponding to the first (and the only) layer is W ∈ Rd1×d0 . Let
f : Rd1 → Rd1 be a differentiable function. Given an input x ∈ Rd0 , the network
outputs

y := f(Wx)

To train the network, we minimize a loss function l : Rd1 × Rd1 → R over labeled
examples (x, y).

1.1.1 Delta rule

The gradient of the squared loss l(x, y) := (1/2) ||y − x||2 with respect to W is

∂

∂W

(
1

2
||y − f(Wx)||2

)
=

(
(f(Wx)− y)� f ′(Wx)

)
x> (1)

where � is the entry-wise multiplication operator. This gradient formula is sometimes
called the “delta rule”.

1.1.2 Linear regression, logistic regression

The network computes linear regression if f(z) := z and l(x, y) := (1/2) ||y − x||2.

For output y ∈ {±1}, the network computes logistic regression if f(z) := 1/(1 +
exp(−z)) and l(x, y) := log(1 + exp(−yx)).1

1The network is known as the perceptron if f(z) := sign(z) and l(x, y) := [[x = y]]: it is usually
trained with the so-called “perceptron-style” algorithm whose updates look very similar to stochastic
gradient descent updates. It can be shown that the perceptron updates always achieve 100% accuracy
on the training data (if possible) within a bounded number of misclassifications. But the perceptron
updates cannot be derived directly from the delta rule, since f is not differentiable at 0.
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1.2 Multi-layer network

A network with L layers has a parameter W (l) ∈ Rdl×dl−1 and a differentiable function
f (l) : Rdl → Rdl corresponding to the l-th layer. Given an input x ∈ Rd0 , the network
outputs

y := a(L)

where each a(l) ∈ Rdl is defined recursively from the base case a(0) := x as follows:

z(l) := W (l)a(l−1)

a(l) := f (l)(z(l))

Again, to train the network, we minimize a loss function l : RdL × RdL → R over
labeled examples (x, y).

1.2.1 Gradients of the squared loss

The gradient of the squared loss on (x, y) with respect to W (L) is

∂

∂W (L)

(
1

2

∣∣∣∣∣∣y − a(L)
∣∣∣∣∣∣2) =

((
a(L) − y

)
� f (L)′

(
z(L)

))(
a(L−1)

)>
(2)

Note that the form mirrors the delta rule (1) because a(L) = f (L)
(
W (L)a(L−1)

)
where

a(L−1) does not involve W (L). By defining the “error term”

δ(L) :=
(
a(L) − y

)
� f (L)′

(
z(L)

)
we can simplify (2) as δ(L)

(
a(L−1)

)>
. Similarly, the gradient with respect to W (l) for

l < L can be verified to be δ(l)
(
a(l−1)

)>
where

δ(l) := f (l)
′
(z(l))�

(
W (l+1)>δ(l+1)

)
Computing all gradients in a multi-layer network in this manner is commonly known
as “backpropagation”, which is just a special case of automatic differentiation. For
concreteness, here is the backpropagation algorithm for an L-layer feedforward net-
work with the squared loss:

BackpropationSquaredLoss
Input: labeled example (x, y) ∈ RdL × RdL , parameters {W (l)}Ll=1

Output: W (l) := ∂
∂W (l) (1/2)

∣∣∣∣y − a(L)
∣∣∣∣2 for l = 1 . . . L

(Feedforward phase)

• Set a(0) ← x, and for l = 1 . . . L compute:

z(l) ←W (l)a(l−1) a(l) ← f (l)(z(l))

(Backpropagation phase)

• Set δ(L) ←
(
a(L) − y

)
� f (L)′ (z(L)

)
, and for l = L− 1 . . . 1 compute:

δ(l) ← f (l)
′
(z(l))�

(
W (l+1)>δ(l+1)

)
• Set W (l) ← δ(l)

(
a(l−1)

)>
for l = 1 . . . L.
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1.3 Example: language models

Let V be the number of distinct word types. The goal of a language model is to
estimate the probability of a word given its history/context.

1.3.1 Bengio et al. (2003)

Bengio et al. (2003) propose the following three-layer feedforward network. As input,
it receives binary vectors ex1

. . . exn
∈ {0, 1}V indicating an ordered sequence of n

words x1 . . . xn. As output, it produces u ∈ RV where uy is the probability of the
(n+ 1)-th word being y. The network is parametrized as follows:2

• Layer 1: matrix W (1) ∈ Rd1×V , identity function

• Layer 2: matrix W (2) ∈ Rd2×nd1 , entry-wise tanhi(z) = tanh(z)

• Layer 3: matrix W (3) ∈ RV×d2 , softmaxi(z) = exp(zi)/
∑

j exp(zj)

Then it defines the probability of word y following words x1 . . . xn as:

p(y|x1 . . . xn) = softmaxy

W (3)tanh

W (2)

W
(1)ex1

...
W (1)exn



 (3)

The parameters of the network can be estimated from a sequence of words x1 . . . xN
by maximizing the log likelihood:

max
W (1),W (2),W (3)

log

N∑
i=n+1

p(xi|xi−n . . . xi−1)

1.3.2 Mikolov et al. (2013)

Mikolov et al. (2013) further simplify the model of Bengio et al. (2003) and propose
the following continuous bag-of-words (CBOW) model. As input, it receives binary
vectors ex−m

. . . ex−1
, ex1

. . . exm
∈ {0, 1}V indicating m words to the left x−m . . . x−1

and m words to the right x1 . . . xm. As output, it produces u ∈ RV where uy is the
probability of the current word being y. The network is parametrized as follows:

• Layer 1: matrix W (1) ∈ Rd1×V , identity function

• Layer 2: matrix W (2) ∈ RV×d1 , softmaxi(z) = exp(zi)/
∑

j exp(zj)

Let x ∈ Rd1 be the x-th column of W (1). Let y ∈ Rd1 be the y-th row of W (2). Then
it defines the probability of word y given context words x−m . . . x−1 and x1 . . . xm as:

p(y|x−m . . . x−1, x1 . . . xm) = softmaxy

(
W (2)W (1)(ex−m

+ · · ·+ ex−1
+ ex1

+ · · ·+ exm
)
)

=
exp(y>(x−m + · · ·+ x−1 + x1 + · · ·+ xm)∑
y′ exp(y′

>
(x−m + · · ·+ x−1 + x1 + · · ·+ xm))

(4)

A variant of CBOW, known as the skip-gram model, has the same parameters but
defines the probability of a context word y given a current word x:

p(y|x) = f (2)y

(
W (2)W (1)ex

)
=

exp(y>x)∑
y′ exp(y′

>
x))

(5)

2The original version has an additional paramater linking layer 1 to 3.
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1.3.3 Hierarchical softmax trick

All the above language models (3, 4, 5) have a softmax layer at the top, which means
that the complexity of computing gradients is O(V ) due to normalization. In the
case of (4, 5), this complexity can be reduced to O(log V ) with a trick known as the
“hierarchical softmax”. We will focus on the skip-gram model for illustration.

The trick assumes a binary tree over the vocabulary (thus the tree has V leaf nodes)
as an additional input. This tree defines a path from the root for each word y. Let
L(y) be the length of this path. For j = 1 . . . L(y)− 1, define:

dir(y, j + 1) :=

{
+1 if the (j + 1)-th node is the left child of the j-th node
−1 if the (j + 1)-th node is the right child of the j-th node

Instead of having a vector y ∈ Rd1 corresponding to each context word y as in (5),
we will have a vector corresponding to each internal node in the tree. Specifically,
for every word y in the vocabulary, for every j = 1 . . . L(y)− 1, we will have a vector
y(j) ∈ Rd1 corresponding to the j-th node in the path from the root to y. Then we
replace the definition of p(y|x) from the original softmax (5) with the following:

p(y|x) =

L(y)−1∏
j=1

σ(dir(y, j + 1)× y(j)>x) (6)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function. This particular construction
makes (6) a proper distribution. Express the binary tree as a set of spans S := {(i, j)}
where each (i, j) has an associated vector yi,j and a split point ki,j . Then it can be
seen that

∑
y p(y|x) = π(1, V ) where π is computed recursively as follows:

π(i, j) :=

{
1 if i = j

σ(y>i,jx)π(i, ki,j) + σ(−y>i,jx)π(ki,j + 1, j) otherwise

Because σ(z) + σ(−z) = 1, each π(i, j) = 1.

2 Recurrent neural networks

In recurrent neural networks (RNNs), a notion of time is introduced. The input at
time step t depends on an output from time step t− 1.

2.1 Simple RNN

A simple RNN (eponymously named the “simple RNN”) has parameters W (1) ∈
Rd1×d0 , V (1) ∈ Rd1×m, and W (2) ∈ Rd2×d1 . Let f (1) : Rd1 → Rd1 and f (2) : Rd2 →
Rd2 be differentiable functions, and let h0 = 0 ∈ Rm. For time step t ≥ 1, it receives
input xt ∈ Rd0 and produces output yt ∈ Rd2 as

ht = f (1)
(
W (1)xt + V (1)ht−1

)
yt = f (2)

(
W (2)ht

)
Observe that if we fix V (1) = 0, we end up with a two-layer feedforward network at
each time step.

4



2.1.1 Training a simple RNN

At each time step t, the “unrolled” simple RNN for the input sequence (x1 . . . xt) and
the output yt is a giant feedforward network, namely:

yn = f (2)
(
W (2)f (1)

(
W (1)xT + · · ·+ V (1)f (1)

(
W (1)x1 + V (1)h0

)))
Thus we can perform backpropagation on this unrolled network. Note that unlike the
standard feedforward network, the gradient of W (1) will need to take into account
multiple instances of W (1).

Given a labeled sequence (x1, y1) . . . (xn, yn), we can control how much to unroll for
training. This is known as “backpropagation through time”.

BackpropationThroughTime
Input: (x1, y1) . . . (xn, yn), how much to unroll T ≤ n, RNN parameters

• Set h0 ← 0.

• For t = T . . . n,

– For t′ = t − T + 2 . . . t, unroll the RNN on ht−T , (xt−T+1 . . . xt′), and
yt′ and perform backpropagation.

– Store ht−T+1 (computed in the previous step).

If T = 1, backpropagation through time degenerates to standard backpropagation on:

yt = f (2)
(
W (2)f (1)

(
W (1)xt + V (1)ĥt

))
where ĥt is considered a constant input (so this network uses each parameter once).

A Derivative rules

Let f, g : R→ R be differentiable functions with first derivatives f ′, g′ : R→ R.

Product rule
∂

∂x
(f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)

Quotient rule
∂

∂x

(
f(x)

g(x)

)
=
f ′(x)g(x)− f(x)g′(x)

g2(x)

Chain rule
∂

∂x
f(g(x)) = f ′(g(x))g′(x)
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