The Monty Hall Problem

Karl Stratos

1 Original Version

Let $X, Y, Z \in \{1, 2, 3\}$ denote random variables representing

- Z: The door behind which the prize car lies
- X: The door I choose (but have not opened)
- Y: The door the host opens to reveal a goat

The generative process is

$$x, z \stackrel{\text{ind}}{\sim} \text{Unif}(\{1, 2, 3\})$$
$$y \sim p_{Y|XZ}(\cdot|x, z)$$

where

1. If the door I choose is the prize door, the host can open either of the two remaining doors.

$$p_{Y|XZ}(y|x,z) = \begin{cases} \frac{1}{2} & \text{if } y \in \{1,2,3\} \setminus \{x\} \\ 0 & \text{otherwise} \end{cases} \qquad \qquad x = z$$

2. If the door I choose is not the prize door, the host must select the only door that is neither my door nor the prize door.

$$p_{Y|XZ}(y|x,z) = \begin{cases} 1 & \text{if } y \in \{1,2,3\} \setminus \{x,z\} \\ 0 & \text{otherwise} \end{cases} \qquad x \neq z$$

The host never opens my door or the prize door. Assume X = 1 and Y = 3 without loss of generality. We have

$$\Pr(X = 1, Y = 3, Z = 1) = \left(\frac{1}{3}\right)^2 \times \underbrace{p_{Y|XZ}(3|1,1)}_{\frac{1}{2}} = \frac{1}{18}$$
$$\Pr(X = 1, Y = 3, Z = 2) = \left(\frac{1}{3}\right)^2 \times \underbrace{p_{Y|XZ}(3|1,2)}_{1} = \frac{1}{9}$$
$$\Pr(X = 1, Y = 3, Z = 3) = \left(\frac{1}{3}\right)^2 \times \underbrace{p_{Y|XZ}(3|1,3)}_{0} = 0$$

thus $\Pr(X=1,Y=3)=\frac{1}{6}$ and

Intuitively, if my door (door 1) is the prize door, the host could have opened door 2 instead; the fact that he didn't makes it more likely that he opened door 3 because he was forced to.

2 Generalization

Assume now there are $n \ge 3$ doors. The random variables are

- $Z \in \{1 \dots n\}$: The door behind which the prize car lies
- $X \in \{1 \dots n\}$: The door I *choose* (but have not opened)
- $Y \subset \{1 \dots n\}$: The n-2 doors the host opens to reveal goats

The generative process is

$$x, z \stackrel{\text{iid}}{\sim} \text{Unif}(\{1 \dots n\})$$

 $y \sim p_{Y|XZ}(\cdot | x, z)$

where

1. If the door I choose is the prize door, the host can open any n-2 doors out of the n-1 remaining doors. Since there are $\binom{n-1}{n-2} = n-1$ choices,

$$p_{Y|XZ}(y|x,z) = \begin{cases} \frac{1}{n-1} & \text{if } y \in \{1\dots n\} \setminus \{x\} \text{ and } |y| = n-2\\ 0 & \text{otherwise} \end{cases} \qquad \qquad x = z$$

2. If the door I choose is not the prize door, the host must select the remaining n-2 doors:

$$p_{Y|XZ}(y|x,z) = \begin{cases} 1 & \text{if } y = \{1 \dots n\} \setminus \{x,z\} \\ 0 & \text{otherwise} \end{cases} \qquad \qquad x \neq z$$

The host never opens my door or the prize door. Assume X = 1 and $Y = \{3 \dots n\}$ without loss of generality. We have

$$\Pr(X = 1, Y = \{3 \dots n\}, Z = 1) = \left(\frac{1}{n}\right)^2 \times \underbrace{p_{Y|XZ}(\{3 \dots n\} \mid 1, 1)}_{\frac{1}{n-1}} = \left(\frac{1}{n}\right)^2 \left(\frac{1}{n-1}\right)$$

$$\Pr(X = 1, Y = \{3 \dots n\}, Z = 2) = \left(\frac{1}{n}\right)^2 \times \underbrace{p_{Y|XZ}(\{3 \dots n\} \mid 1, 2)}_{1} = \left(\frac{1}{n}\right)^2$$

$$\Pr(X = 1, Y = \{3 \dots n\}, Z = 2) = \left(\frac{1}{n}\right)^2 \times \underbrace{p_{Y|XZ}(\{3 \dots n\} \mid 1, 2)}_{0} = 0 \qquad \forall z \in \{3 \dots n\}$$

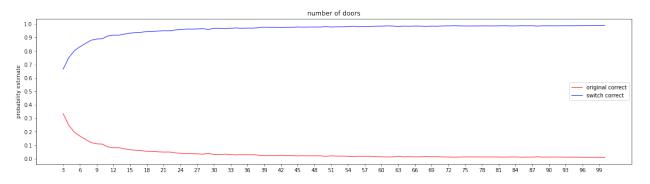
thus $\Pr(X = 1, Y = \{3 \dots n\}) = \left(\frac{1}{n}\right)^2 \left(\frac{n}{n-1}\right)$ and

$$\Pr(Z=1|X=1,Y=\{3\dots n\}) = \frac{\left(\frac{1}{n}\right)^2 \left(\frac{1}{n-1}\right)}{\left(\frac{1}{n}\right)^2 \left(\frac{n}{n-1}\right)} = \frac{1}{n} < \Pr(Z=2|X=1,Y=\{3\dots n\}) = \frac{\left(\frac{1}{n}\right)^2}{\left(\frac{1}{n}\right)^2 \left(\frac{n}{n-1}\right)} = \frac{n-1}{n}$$

Intuitively, if my door (door 1) is the prize door, the host could have opened any set of n-2 doors other than $\{3...n\}$ out of $\{2...n\}$; the fact that he didn't, even though he would have had so many options, makes it overwhelmingly likely that he opened doors $\{3...n\}$ because he was forced to.

3 Discussion

Switching the door (to the only other alternative door), instead of adhering to the original door, after the host reveals n-2 goats makes it n-1 more likely that I will win the prize. Here is a simulation that estimates the probability of winning the prize with either the original door or the switched door over 10,000 games for each n = 3, 4, ..., 100:



Even after proving and simulating the statement, I *still* find it counterintuitive, because of my deeply rooted belief that the host, who acts after I make a selection and does not even tell me where the prize is, should not affect my original decision. As noted by Glymour *et al.* (2016), we must approach the problem in terms of what options the host had before revealing goats.

- My door, no matter what it is, was never an option for the host to open.
- The other door (neither mine nor one of the host's revealed doors), was an option for the host to open but he didn't.
- My door was never put through a test of refutation, while the other door withstood the test. Therefore, the latter is the more likely answer.

References

Glymour, M., Pearl, J., and Jewell, N. P. (2016). Causal inference in statistics: A primer. John Wiley & Sons.