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1 Source Coding Theorem

We want to encode XN into {0, 1}B where X is a finite set of symbols. By the pigeonhole principle, we need

B ≥ N log |X | to guarantee a lossless encoding of |X |N possible sequences.1 But suppose the sequence is a random
variable X ∼ popN where pop is a distribution over X . Can we achieve an “almost lossless” encoding using fewer
bits? By the usual interpretation of entropy, B = H(popN ) = NH(pop) bits should be sufficient.

More formally, we consider a probabilistic compression of XN . Let Sδ(N) denote a subset of XN such that

Pr(X ∈ Sδ(N)) ≥ 1− δ (1)

As δ → 0+, it contains all “practical” sequences and log |Sδ(N)| measures how many bits we need to encode
X ∼ popN without much loss of information.

1.1 Asymptotic Equipartition Principle

How small can Sδ(N) be? To answer this question, we first characterize the most typical realizations of X, because
they will be size-efficient in capturing X. The crucial observation is that for a sequence x ∈ XN drawn according
to the generative process (i.e., x1 . . . xN ∈ X are iid samples of pop),

lim
N→∞

(
− 1

N
log Pr(X = x)

)
= H(pop)

Thus as N gets bigger, more sequences x ∈ XN will have a normalized negative log probability close to H(pop).
This motivates defining a typical set as

Tc(N) :=

{
x ∈ XN :

∣∣∣∣− 1

N
log Pr(X = x)−H(pop)

∣∣∣∣ < c

}
(2)

for some c > 0. It follows from the weak law of large numbers (Tool B.3)

Pr (X ∈ Tc(N)) ≥ 1− σ2

Nc2
(3)

where σ2 = Var (− logpop(Xi)). At the same time, the definition (2) implies that any x ∈ Tc(N) has a probability
bounded as

2−N(H(pop)+c) < Pr (X = x) < 2−N(H(pop)−c) (4)

This is not surprising: typical sequences should be similarly probable, and no single sequence should hoard too much
probability mass. (4) further implies that Tc(N) cannot be too large. Specifically, since |Tc(N)| 2−N(H(pop)+c) < 1,
we must have

|Tc(N)| < 2N(H(pop)+c) (5)

The fact that, asymptotically in N → ∞, Tc(N) captures X ∈ XN with only 2NH(pop) sequences roughly having
the same probability 2−NH(pop) is referred to as the asymptotic equipartition principle.

1One such lossless encoding is

x ∈ XN 7→ (b
(1)
1 . . . b

(1)
log|X|︸ ︷︷ ︸

identify x1

, b
(2)
1 . . . b

(2)
log|X|︸ ︷︷ ︸

identify x2

, . . . , b
(N)
1 . . . b

(N)
log|X|︸ ︷︷ ︸

identify xN

) ∈ {0, 1}N log|X|
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1.2 Optimal Compression

We can now answer how small can Sδ(N) be. Let S⋆
δ (N) denote a smallest Sδ(N). Since we can choose cδ(N) =

σ(δN)−1/2 to have by (3)

Pr
(
X ∈ Tcδ(N)

)
≥ 1− δ (6)

whatever S⋆
δ (N) is, it has to be at least as small as Tcδ(N)(N). Furthermore,

|S⋆
δ (N)| ≤

∣∣Tcδ(N)(N)
∣∣

< 2N(H(pop)+cδ(N)) (by (5))

< 2N(H(pop)+ϵ) (for any ϵ > 0, as long as N is sufficiently large to drive cδ(N) < ϵ)

We have proved the following lemma.

Lemma 1.1. Pick any ϵ > 0 and 0 < δ < 1. There is some N0 ∈ N such that for all N > N0

|S⋆
δ (N)| < 2N(H(pop)+ϵ) (7)

By picking ϵ → 0+ and δ → 0+, we have that if N is sufficeintly large, choosing 2NH(pop) (typical) sequences is
sufficient to practically guarantee capturing X ∼ popN .

1.3 Any Compression

We can also show how big any Sδ(N) needs to be. Pick any ϵ > 0 and 0 < δ < 1. For all sufficiently large N

|Sδ(N)| > 2N(H(pop)−ϵ) (8)

This happens mainly because

• For a large N , most sequences in Sδ(N) must also be in Tc(N) by (3).

• But the probability of any x ∈ Tc(N) is at most 2−N(H(pop)−c) by (4).

• So Sδ(N) needs at least O(2NH(pop)) elements to fulfill Pr(X ∈ Sδ(N)) ≥ 1− δ.

See the proof of Lemma C.3 for details. By picking ϵ → 0+ and δ → 1−, we have that if N is sufficiently large, we
can never capture any X ∼ popN using fewer than 2NH(pop) sequences.

1.4 A Combined Statement

We can combine (7) and (8) as: for any ϵ > 0 and 0 < δ < 1, for all sufficiently large N (Theorem C.4)∣∣∣∣ 1N log |S⋆
δ (N)| −H(pop)

∣∣∣∣ < ϵ (9)

In particular, pick ϵ → 0+.2 Then (9) holds for some large N and the “code rate” 1
N log |S⋆

δ (N)| ≈ H(pop) is
constant in δ. Thus it does not matter what δ is in the limit N → ∞. Even if we are willing to lose almost all the
information (i.e., δ is close to 1), we need the code rate of at least H(pop) when N is sufficiently large. On the
positive side, if we want to preserve almost all the information (i.e., δ is close to 0), we still need the code rate of
only H(pop) when N is sufficiently large.

2It is interesting to note that ϵ = 0 is not allowed. But this simply reflects the fact that we must lose some information as long as
we do not use all |X |N sequences.
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Visual proof. We set pop to be a random distribution over X = {1, 2, 3, 4}. Given any N and δ, we can

compute the size of S⋆
δ (N) by including most likely sequences x ∈ XN (i.e., has the highest

∏N
i=1 pop(xi)) until

S⋆
δ (N) ≥ 1− δ. The following plots the code rate as a function of 0 < δ < 1 for different values of N , as illustrated

also in MacKay (2003).
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A Binomial Coefficient

Analyzing an error-correcting code frequently involves the binomial coefficient: for 0 ≤ k ≤ n,(
n

k

)
=

n!

(n− k)!k!

is the number of ways to select k out of n items (unordered). It is also the coefficient of xn−kyk in (x+ y)n by the
binomial theorem:

(x+ y)n =

n∑
k=1

(
n

k

)
xn−kyk

Pascal’s triangle states that, arranging n = 0, 1, 2, . . . as rows and k = 0, . . . , n as elements of the n-th row, we have

(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
with the base case

(
0
0

)
= 1 (and 0 for all entries with k < 0). From the recurrence it is clear that

k⋆ = argmax
k∈{0,...,n}

(
n

k

)
∈
{⌊n

2

⌋
,
⌈n
2

⌉}
The ratio between

(
n
k⋆

)
and the next maximum

(
n

k⋆±1

)
tends to 1 as n → ∞,(

n
k⋆

)(
n

k⋆±1

) =

(
n
2 + 1

)
!
(
n
2 − 1

)
!(

n
2

)
!
(
n
2

)
!

= 1 +
2

n

A.1 Information Theoretic Approximation

Using the fact that the binomial distribution B(n, k
n ) (which involves the binomial coefficient) is normalized, we

can show (Lemma C.1):

1

n+ 1
2nH2( k

n ) ≤
(
n

k

)
≤ 2nH2( k

n ) (10)

where H2(p) := H(Ber(p)) for any p ∈ [0, 1]. A sharper bound exists for 0 < k < n:√
n

8k(n− k)
2nH2( k

n ) ≤
(
n

k

)
≤
√

n

πk(n− k)
2nH2( k

n ) (11)

which follows from (a non-asympototic version of) Stirling’s approximation; see Lemma 17.5.1 in Cover and Thomas
(2006) for a proof. Thus we may approximate (

n

k

)
≈ 2nH2( k

n ) (12)

By (11), their ratio satisfies (
n
k

)
2nH2( k

n )
= Θ

(√
n

k(n− k)

)
In particular, choosing k = n

2 (assuming n is even) and using the fact that H2(
1
2 ) = 1,(

n
n
2

)
2n

= Θ

(√
1

n

)
(13)
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B Analytical Tools

Tool B.1 (Chebyshev’s inequality 1). For a nonnegative random variable X ≥ 0 and a positive constant c > 0:

Pr (X ≥ c) ≤ E [X]

c
(14)

Proof. It is derived directly from the definition of E [X].

Tool B.2 (Chebyshev’s inequality 2). For a random variable X ∈ R and a positive constant c > 0:

Pr
(
(X −E [X])2 ≥ c

)
≤ Var (X)

c
(15)

Proof. It is a corollary of Tool B.1 with Y = (X − E [X])2 ≥ 0 as the nonnegative random variable satisfying
E [Y ] = Var (X).

Tool B.3 (Weak law of large numbers3). Let X1 . . . XN ∈ R be iid random variables with a mean µ ∈ R and a
variance σ2 > 0. For any positive constant c > 0:

Pr

( 1

N

N∑
i=1

Xi − µ

)2

≥ c

 ≤ σ2

Nc
(16)

Proof. It is a corollary of Tool B.2 with sX = 1
N

∑N
i=1 Xi as the random variable satisfying E

[
sX
]
= µ and

Var
(

sX
)
= σ2

N .

C Lemmas

Lemma C.1. For 0 ≤ k ≤ n,

1

n+ 1
2nH2( k

n ) ≤
(
n

k

)
≤ 2nH2( k

n )

Proof. We consider the binomial distribution B(n, p) with p = k
n . For the upper bound, we note

1 ≥ B(n, p)(k) =

(
n

k

)
pk (1− p)

n−k
=

(
n

k

)
2n(

k
n log p+n−k

n log(1−p)) =

(
n

k

)
2−nH2( k

n )

For the lower bound, since np = k is an integer, the mode of B(n, p) is np (see Wikipedia). Then

1 =

n∑
k=0

B(n, p)(k) ≤ (n+ 1)

(
n

np

)
pnp(1− p)n−np = (n+ 1)

(
n

k

)
pk(1− p)n−k = (n+ 1)

(
n

k

)
2−nH2( k

n )

Lemma C.2. Pick any 0 < p < 1
2 and even N ∈ N. Let X ∼ Ber( 12 ) and Z ∈ {0, 1}N where

Zi =

{
X with probability 1− p

¬X with probability p
∀i = 1 . . . N, independently

Then for any Z = z,

x⋆ = argmax
x∈{0,1}

Pr (X = x|Z = z) = Vote(z) (17)

where Vote(z) = 1(> N
2 bits in z are 1). Furthermore,

Pr (Vote(Z) ̸= X) ≈ (4p(1− p))N/2 (18)

The approximation becomes exact as p → 0 and N → ∞.
3See this post for why it is called “weak”.
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Proof. For (17), by Bayes’ rule and the uniformity of X,

x⋆ = argmax
x∈{0,1}

Pr (Z = z|X = x) =

{
1 if Pr (Z = z|X = 1) > Pr (Z = z|X = 0)

0 otherwise

Since Z1 . . . ZN are independent, Pr (Z = z|X = x) = pcount¬x(z)(1− p)countx(z). Thus

x⋆ = 1 ⇔ pcount0(z)(1− p)count1(z) > pcount1(z)(1− p)count0(z)

⇔
(

p

1− p

)count0(z)−count1(z)

> 1

⇔ count0(z)− count1(z) < 0

⇔ Vote(z) = 1

using the fact that 0 < p < 1
2 . For (18), Vote(Z) ̸= X iff at least N

2 (±1) of the bits flip X. Thus

Pr (Vote(Z) ̸= X) = Bin(N, p)

(
N

2

)
+Bin(N, p)

(
N

2
+ 1

)
+ · · ·+Bin(N, p) (N)

≈ Bin(N, p)

(
N

2

)
(exact as p → 0 by (19))

=

(
N

N/2

)
pN/2(1− p)N/2

≈ 2NpN/2(1− p)N/2 (exact as N → ∞ by (13))

= (4p(1− p))N/2

For the first approximation, first note that the terms are monotonically decreasing since N
2 > Np (i.e., we are past

the mean of the binomial distribution). The first term dominates the next term by

Bin(N, p)(N/2)

Bin(N, p)(N/2 + 1)
=

( (
N

N/2

)(
N

N/2+1

)) pN/2(1− p)N/2

pN/2+1(1− p)N/2−1
=

(
1 +

2

N

)
1− p

p
= Ω

(
1

p

)
(19)

So the approximation is justified for sufficiently small p.

Lemma C.3. Pick any ϵ > 0 and 0 < δ < 1. For each N ∈ N, pick any subset Sδ(N) ⊂ XN satisfying
Pr(X ∈ Sδ(N)) ≥ 1− δ with respect to X ∼ popN . There is some N0 ∈ N such that for all N > N0

|Sδ(N)| > 2N(H(pop)−ϵ)

Proof. Suppose otherwise. Then there are infinitely many N1 < N2 < · · · such that |Sδ(Ni)| ≤ 2Ni(H(pop)−ϵ). For
any constant c > 0, we may use the typical set Tc(Ni) defined in (2) and its complement T ∁

c (Ni) to have

Pr(X ∈ Sδ(Ni)) = Pr
(
X ∈ Sδ(Ni) ∩ T ∁

c (Ni)
)
+ Pr (X ∈ Sδ(Ni) ∩ Tc(Ni))

≤ Pr (X ̸∈ Tc(Ni)) + |Sδ(Ni)| max
x′∈Tc(Ni)

Pr (X = x′) (20)

<
σ2

Nic2
+ 2Ni(H(pop)−ϵ) · 2−Ni(H(pop)−c) (21)

=
σ2

Nic2
+ 2Ni(c−ϵ) (22)

(20) is a worst-case bound. The first term uses the fact that X ∈ Sδ(Ni) ∩ T ∁
c (Ni) implies X ̸∈ Tc(Ni). A more

formal derivation of the second term is

Pr (X ∈ Sδ(Ni) ∩ Tc(Ni)) =
∑

x∈Sδ(Ni)

1 (x ∈ Tc(Ni)) Pr (X = x) ≤
∑

x∈Sδ(Ni)

max
x′∈Tc(Ni)

Pr (X = x′)

= |Sδ(Ni)| max
x′∈Tc(Ni)

Pr (X = x′)
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where the inequality follows because for any x ∈ X

1 (x ∈ Tc(Ni)) Pr (X = x) =

{
Pr (X = x) if x ∈ Tc(Ni)

0 otherwise
≤ max

x′∈Tc(Ni)
Pr (X = x′)

(21) uses the coverage of the typical set (3), the smallness of Sδ(Ni), and the probability bound on a typical element
(4). Now we select c = ϵ

2 > 0 to obtain

Pr(X ∈ Sδ(Ni)) <
2σ2

Niϵ2
+ 2−Ni(ϵ/2)

which grows strictly smaller for N1 < N2 < · · · . Thus we can find a sufficiently large j such that

Pr(X ∈ Sδ(Nj)) < 1− δ

which contradicts the premise.

Theorem C.4. Pick any ϵ > 0 and 0 < δ < 1. For each N ∈ N, pick a smallest subset S⋆
δ (N) ⊂ XN satisfying

Pr(X ∈ S⋆
δ (N)) ≥ 1− δ with respect to X ∼ popN . There is some N0 ∈ N such that for all N > N0∣∣∣∣ 1N log |S⋆

δ (N)| −H(pop)

∣∣∣∣ < ϵ

Proof. Since S⋆
δ (N) is a particular subset satisfying the condition in Lemma C.3, there is some N ′

0 ∈ N such that
|S⋆

δ (N)| > 2N(H(pop)−ϵ) for all N > N ′
0. By Lemma 1.1, there is some N ′′

0 ∈ N such that |S⋆
δ (N)| < 2N(H(pop)+ϵ)

for all N > N ′′
0 . Thus for all N > N0 = max(N ′

0, N
′′
0 ),

2N(H(pop)−ϵ) < |S⋆
δ (N)| < 2N(H(pop)+ϵ) ⇔ H(pop)− ϵ <

1

N
log |S⋆

δ (N)| < H(pop) + ϵ

⇔
∣∣∣∣ 1N log |S⋆

δ (N)| −H(pop)

∣∣∣∣ < ϵ
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