
Indexes for Efficient Search

Karl Stratos

This note assumes that you understand quantization (Appendix A) and graph-based search (Appendix C).

1 Setting

Let x ∈ RD denote a query vector and Y = {y1 . . . yN} ⊂ RD a set of N target vectors. Our goal is to find

y∗ = argmin
y∈Y

||x− y|| (1)

An index (plural: indexes) is a data structure to store Y, paired with an inference scheme for finding (1). For each
index, we are interested in (i) exactness, (ii) memory usage, and (iii) runtime.

The baseline is the flat index, which stores Y in memory as is and conducts an exhaustive search. It is trivially
exact. It uses 4ND bytes since each float requires 4 bytes. It has O(ND) runtime since it computes N distances
between two D-dimensional vectors.

2 Inverted File (IVF) Index

We can speed up search by constraining the search space.1 The IVF index does this by learning a codebook
C = (µ1 . . . µK) ∈ RK×D from Y and maintaining a partition Yk = {y ∈ Y : code(y) = k}. Given P ≤ K, IVF
computes

yIVF = argmin
y∈Yk1

∪...∪YkP

||x− y||

where ||x− µk1
|| < · · · < ||x− µkP

|| < · · · < ||x− µkK
||. Clearly IVF is exact with P = K. With P < K we may

lose exactness. Let P = 1 and consider the case x lies close to the boundary (image credit: James Briggs):

In this picture, y∗ is outside Y1 (the magenta cell), thus yIVF ̸= y∗. There is no improvement in memory usage
since we still need to store all target vectors (plus additional memory to store the codebook and the inverted file
structure). However, runtime has improved to O(NIVFD) where NIVF is the expected size of the constrained search
space. For instance, assuming uniform cluster sizes, IVF is K

P times faster.

1In general, we achieve this by constructing K smaller subsets Y1 . . .YK ⊂ RD of Y, inferring what subsets to search for x, and only
going through those subsets. A classical example is the inverted index with a sparse representation (e.g., TFIDF) where each dimension
corresponds to a word in some vocabulary V. Since a vector has nonzero weights only for activated words, we can construct subsets
Y1 . . .Y|V| where Yw = {y ∈ Y : yw > 0} (they may overlap). Given x, we only search Yw’s such that xw > 0. Note that the search
remains exact in this case.

https://www.pinecone.io/learn/vector-indexes/

3 Product Quantization (PQ) Index

The PQ index performs product quantization on Y ⊂ RD (Appendix A.2). It expects a number of subspacesM and

a number of bits to encode the code assignment b, which imply M sub-codebooks of the form Cj = (µ
(j)
1 . . . µ

(j)
K) ∈

RK× D
M where K = 2b. The associated quantizer q can output KM possible values. PQ exploits the fact that the

(squared) distance between the query x and the quantized target q(yi) can be written as

||x− q(yi)||2 =

M∑
j=1

∣∣∣∣∣∣sub(x, j)− µ
(j)
codej(yi)

∣∣∣∣∣∣2
where many values can be precomputed. Note that the query vector is not quantized: this design choice is termed
assymetric distance computation (ADC).2 We will assume b≪ logN and ignore overheads in K. The storage
requirement of PQ is

• C = [C1 . . . CM] ∈ RK×D which takes 4KD bytes (constant in N).

• O ∈ {1 . . .K}N×M
where Oi,j = codej(yi). This takes

1
8NMb bytes (e.g., NM if b = 8).

which uses roughly D
M times less memory. At inference time, given the query x, PQ computes

• ∆(x) ∈ RM×K where ∆j,k(x) = ∥sub(x, j)− µ
(j)
k ∥2. This takes O(KD) time (constant in N).

• yPQ = yi∗ where

i∗ =
N

argmin
i=1

M∑
j=1

∆j,Oi,j
(x)

This take O(NM) time.

Thus PQ is roughly D
M times faster. PQ is exact if quantization is lossless (i.e., q(yi) = yi, for instance with M = D,

K = N , and µ
(j)
k = [yk]j), but in general yPQ ̸= y∗.

4 IVFPQ Index

IVF speeds things up by non-exhaustive search. PQ reduces memory usage by quantization. The IVFPQ index
pipelines IVF and PQ to achieve both benefits, though it also suffers from error propagation. A naive approach is
to build the two indexes independently. A better approach is to use IVF as a coarse quantizer, then performing
PQ on the resulting residuals, which can be effective in combating variance issues (Appendix A.3). Specifically, we
compute

qc ← Quantizer (Y,K, P)

qp ← ProductQuantizer
(

sY,M, b
)

sY =
{
y − qc(y) ∈ RD : y ∈ Y

}
The final quantization of yi is given by q(yi) = qc(yi) + qp(yi − qc(yi)). Let L = 2b denote the number of centroids
in each sub-codebook of qp (to distinguish it from the number of centroids K in the codebook of qc). The storage
requirement of IVFPQ is

• (µ1 . . . µK) ∈ RK×D, the codebook of qc

• o ∈ {1 . . .K}N where oi = codec(yi) is the code assigned to the i-th target by qc

• Inverted file structure inv(k) = {i : oi = k}

• [Cp,1 . . . Cp,M] ∈ RL×D, the sub-codebooks of qp where Cp,j = (ν
(j)
1 . . . ν

(j)
L) ∈ RL× D

M

• O ∈ {1 . . . L}N×M
where Oi,j = codep,j(yi − qc(yi)) is the j-th code assigned to the i-th residual by qp

2In symetric distance computation (SDC), we consider ||q(x)− q(yi)||2. The upshot is that all possible O(MK2) differences
between centroids can be precomputed. However, this incurs additional loss in accuracy since we quantize the query (worse, the centroids
are fit to the target vectors). Thus most works focus on ADC.

which is roughly the same as in PQ (so D
M times less memory). IVFPQ exploits the fact that the (squared) distance

between the query x and q(yi) can be written as

||x− q(yi)||2 = ||x− qc(yi)− qp(yi − qc(yi))||2

= ||x− qc(yi)||2 + ||qp(yi − qc(yi))||2 + 2 ⟨qc(yi), qp(yi − qc(yi))⟩ − 2 ⟨x, qp(yi − qc(yi))⟩

where we can further expand the latter terms as

||qp(yi − qc(yi))||2 =

M∑
j=1

∣∣∣∣∣∣ν(j)Oi,j

∣∣∣∣∣∣2 (2)

⟨qc(yi), qp(yi − qc(yi))⟩ =
M∑
j=1

〈
sub(µoi , j), ν

(j)
Oi,j

〉
(3)

⟨x, qp(yi − qc(yi))⟩ =
M∑
j=1

〈
sub(x, j), ν

(j)
Oi,j

〉

In principle the terms required to compute (2) and (3) can be precomputed offline as π(j, l) = ∥ν(j)l ∥2 and τ(k, j, l) =

⟨sub(µk, j), ν
(j)
l ⟩, though it uses O(KML) memory. In summary, at inference time, given the query x IVFPQ

computes

• k1 . . . kP ∈ {1 . . .K} where ||x− µk1
|| < · · · < ||x− µkP

|| < · · · < ||x− µkK
||

• t(x) ∈ RK where tk(x) = ||x− µk||2. This takes O(KD) time (constant in N).

• ∆(x) ∈ RM×L where ∆j,l(x) =
〈
sub(x, j), ν

(j)
l

〉
. This takes O(LD) time (constant in N).

• yIVFPQ = yi∗ where

i∗ = argmin
i∈∪k∈{k1...kP }inv(k)

toi(x) +

M∑
j=1

π(j,Oi,j) + 2τ(oi, j, Oi,j)− 2∆j,Oi,j (x)

This takes O(NIVFM) time where NIVF =
∣∣∪k∈{k1...kP }inv(k)

∣∣.
Thus IVFPQ is roughly K

P ×
D
M times faster.

5 Hierarchical Navigable Small World (HNSW) Index

The HNSW index (Malkov and Yashunin, 2018) performs graph-based search using a structure that we call
HNSW. An HNSW H has L + 1 layers (or levels) H.layer(L) . . . H.layer(0) (top to bottom). The layers nested
graphs over Y that are increasingly more connected. At search time, we start from the top, “step down” layer
by layer, and conduct a local search at each layer. The main idea is that the sparsely connected top layers have
long-range edges and will allow us to zoom around the entire Y really fast (corresponding to the top branches of a
binary search tree or top levels of a skip list (Pugh, 1990)), and the densely connected lower layers will allow us to
do fine-grained search.

We will assume an approximate nearest neighbor search function

ANN(G = (V,E), u, S,dist,K) ⊂ V

that performs graph-based local search over G from a starting set S ⊂ V to return K locally optimal vertices v ∈ V
in minimizing dist(u, v).3 H is constructed by incrementally adding elements in Y, using the insertion function
below.

InsertHNSW
Input: HNSW H with L+1 levels, element to insert u ∈ RD, metric dist : RD ×RD → [0,∞), level normalizer mL,
number of nearest neighbors K, oversampling parameter Kover ≥ K, max node degree at non-bottom layers Rmax,
max node degree at bottom layer R0

max,
Output: updated H, with u inserted and possibly with > L+ 1 levels

1. S ← {H.entry()}
2. Lu ← ⌊z⌋ where z ∼ Exp(1

mL
)

3. For l = L . . . Lu + 1:

(a) S ← ANN(H.layer(l), u, S,dist, 1)

4. For l = min(L,Lu) . . . 0:

(a) Sover ← ANN(H.layer(l), u, S,dist,Kover)

(b) S ← K nearest neighbors of u in Sover

(c) H.vertices(l)← H.vertices(l) ∪ {u}
(d) H.edges(l)← H.edges(l) ∪ {(u, v) : v ∈ S}
(e) Limit the number of edges at any node to be at most Rmax nearest neighbors if l > 0, R0

max if l = 0

5. If Lu > L, set H.entry()← u.

Note that the level Lu is drawn from an exponentially decaying distribution, so the lower layers of H will be
exponentially more dense. Once H is constructed, we traverse top to bottom following 1 nearest neighbor until we
reach a promising point in the bottom layer, then get K locally optimal neighbors around that point.

SearchHNSW
Input: HNSW H with L+1 levels, target t ∈ RD, metric dist : RD ×RD → [0,∞), number of nearest neighbors K,
oversampling parameter Kover ≥ K
Output: K approximate nearest neighbors to t under dist

1. S ← {H.entry()}
2. For l = L . . . 1: S ← ANN(H.layer(l), t, S,dist, 1)

3. Return K nearest neighbors of t in ANN(H.layer(0), t, S,dist,Kover).

There are effective heurstics for choosing hyperparameter values. The level normalizer is set to be mL = 1
logK ,

which implies Pr(Lu ≥ 1) = 1
K . The max degrees are set to be Rmax = K and R0

max = 2K. The main parameter
to choose is the number of nearest neighbors K for graph construction: a reasonable choice is K ∈ {16, 32}. A
reasonable choice of the oversampling parameter is Kover = 40 or bigger (e.g., 100, 500) (smaller for search, e.g.,
16, 32, 64, . . .).

Storage requirement.

• Original N vectors Y ⊂ RD, so 4DN bytes

• About (mLRmax +R0
max)N edges: this will scale proportional to K with the heuristic above

Since the number of edges grows linearly with N , HNSW is rather memory intensive. It can be combined with PQ
in a composite index to avoid storing the original vectors.

3For instance, this can be obtained by modifying KNNGraphSearch in Appendix C.2.

Runtime. The expected max level of an HNSW over N vectors in Y is (Appendix E)

E

[
max
y∈Y

Ly

]
= Θ(logN)

The node degree in each layer is constant in N . The number of steps in ANN can also be argued as constant in
an idealized scenario.4 In this case, the search time is O(logN) and the graph construction time is O(N logN).

6 Practical Issues

Maximum inner product (MIP). Instead of the nearest neighbor in Euclidean space (NNE) y∗ , we often seek

y∗IP = argmax
y∈Y

⟨x, y⟩ (4)

In general, y∗IP ̸= y∗ unless every y ∈ Y has the same length. But it is possible to transform vectors so that NNE is

MIP. Specifically, let ν2max = maxNj=1 ||yj ||
2
and redefine query and target vectors to be

x̃ = (x, 0) ∈ RD+1 ỹi =

(
yi,

√
ν2max − ||yi||

2︸ ︷︷ ︸
≥0

)
∈ RD+1 ∀i ∈ {1 . . . N}

Then ||ỹi||2 = ν2max for all i, so that

N
argmin

i=1
||x̃− ỹi||2 =

N
argmin

i=1

(
||x̃||2 + ||ỹi||2 − 2 ⟨x̃, ỹi⟩

)
=

N
argmin

i=1

(
||x||2 + ν2max − 2 ⟨x, yi⟩

)
=

N
argmax

i=1
⟨x, yi⟩

In practice, we can directly compute MIP, so we rarely need to transform MIP to NNE unless we have an index
that only supports NNE.

6.1 Experiments

To gain an empirical understanding of the indexes, we conduct experiments on the open-domain version of Natural
Questions (NQ) dataset (Karpukhin et al., 2020). We have N = 21015324 target embeddings with dimension
D = 768. For each of 3600 query embeddings, we retrieve top-100 MIP candidates (4) using various indexes
implemented in Faiss (Johnson et al., 2019), and calculate Recall@k for k ∈ {1, 5, 20, 100} where a candidate is
considered correct iff it contains the answer string for the query. For PQ, we also explore learning a rotation matrix
(“OPQ”, Appendix A.2.1); but note that Faiss treats OPQ as a preprocessing step, rather than performing full
alternating optimization.

index load/train search memory ms/query R@1 R@5 R@20 R@100

Flat 4m 80.5G 46.5 46.3 68.4 79.5 86.2
IVF(K=1000, P=20) 4m 89.1G 10.5 44.6 65.7 76.2 83.4
IVF(K=1000, P=10) 5.1 42.9 63.7 73.9 81.2
IVF(K=1000, P=100) 49.5 46.3 68.2 79.3 85.8
PQ(M=32, b=8) 6m 21.0G 15.1 20.6 40.2 56.6 72.6
PQ(M=32, b=8) w/ OPQ 9m 36.0 61.0 74.9 84.2
PQ(M=16, b=8) 8.2 7.4 19.9 34.1 52.4
PQ(M=16, b=8) w/ OPQ 25.5 50.2 66.5 80.0
IVFPQ(K=1000, P=100, M=32, b=8) 6m 21.1G 1.8 22.0 42.9 60.1 74.1
IVFPQ(K=1000, P=20, M=32, b=8) 0.4 21.6 42.0 58.6 72.6
IVFPQ(K=1000, P=100, M=32, b=8) w/ OPQ 10m 37.6 61.1 75.2 84.3
IVFPQ(K=45842, P=5000, M=32, b=8) 2h19m 2.5 23.8 45.1 62.4 76.5
HNSW(K=32, Kover=500|256) 2h28m 122.0G 0.4 46.1 68.1 79.2 85.7
HNSW(K=32, Kover=100|256) 31m 45.5 67.3 78.1 84.5
HNSW(K=32, Kover=40|256) 22m 15.7 36.9 55.4 70.2

We see that IVF offers no memory reduction but can improve speed at a modest cost in recall. PQ vastly reduces
memory and also improves speed, but recall suffers heavily. With the rotation preprocessing, however, PQ becomes

4Assume each layer is an exact Delaunay triangulation. Then ANN terminates before it reaches a node that belongs to a higher
layer. The level is geometrically distributed independently of N , so each node has some probability p of belonging to the layer above.
The expected number of steps in ANN is then independent of N .

much more competitive. IVFPQ vastly reduces memory and vastly improves speed, but recall is poor; note that
the performance of IVFPQ is fundamentally limited by that of PQ, though residual fitting may give a slight edge.
IVFOPQ has a significantly better recall (again, however, it is no better than just OPQ). HNSW has a heavy
memory overhead, but is extremely fast and a decisive win in recall, nearing the performance of exhaustive search.
HNSW is rather sensitive to Kover, the oversampling parameter in graph construction. Training time is negligible
except for IVF with large K and HNSW with large Kover.

References

Beaumont, O., Kermarrec, A.-M., Marchal, L., and Rivière, É. (2007). Voronet: A scalable object network based
on voronoi tessellations. In 2007 IEEE International Parallel and Distributed Processing Symposium, pages 1–10.
IEEE.

Eisenberg, B. (2008). On the expectation of the maximum of iid geometric random variables. Statistics & Probability
Letters, 78(2), 135–143.

Gärtner, B. and Hoffmann, M. (2013). Computational geometry lecture notes hs 2013. Dept. of Computer Science,
ETH, Zürich, Switzerland .

Ge, T., He, K., Ke, Q., and Sun, J. (2013). Optimized product quantization for approximate nearest neighbor
search. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2946–2953.

Jegou, H., Douze, M., and Schmid, C. (2010). Product quantization for nearest neighbor search. IEEE transactions
on pattern analysis and machine intelligence, 33(1), 117–128.

Johnson, J., Douze, M., and Jégou, H. (2019). Billion-scale similarity search with GPUs. IEEE Transactions on
Big Data, 7(3), 535–547.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., and Yih, W.-t. (2020). Dense passage
retrieval for open-domain question answering. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6769–6781.

Kleinberg, J. (2000). The small-world phenomenon: An algorithmic perspective. In Proceedings of the thirty-second
annual ACM symposium on Theory of computing , pages 163–170.

Malkov, Y., Ponomarenko, A., Logvinov, A., and Krylov, V. (2014). Approximate nearest neighbor algorithm based
on navigable small world graphs. Information Systems, 45, 61–68.

Malkov, Y. A. and Yashunin, D. A. (2018). Efficient and robust approximate nearest neighbor search using hier-
archical navigable small world graphs. IEEE transactions on pattern analysis and machine intelligence, 42(4),
824–836.

Norouzi, M. and Fleet, D. J. (2013). Cartesian k-means. In Proceedings of the IEEE Conference on computer Vision
and Pattern Recognition, pages 3017–3024.

Pugh, W. (1990). Skip lists: a probabilistic alternative to balanced trees. Communications of the ACM , 33(6),
668–676.

A Quantization

Let C = (µ1 . . . µK) ∈ RK×D where C is called a codebook and µk ∈ RD the k-th code embedding or centroid.
We assume a lower bounded “distortion” function δ : RD × RD → [δmin,∞). We define

code : RD → {1 . . .K} code(u) =
K

argmin
k=1

δ(u, µk)

q : RD → RD q(u) = µcode(u) (5)

We call q a quantizer. We can train q on a set of N points u1 . . . uN ⊂ RD to minimize the total distortion:

N∑
i=1

δ(ui, q(ui)) =

N∑
i=1

δ(ui, µcode(ui)) =

N∑
i=1

K
min
k=1

δ(ui, µk) = min
a1...aN∈{1...K}

N∑
i=1

δ(ui, µai
) (6)

This problem is generally NP-hard. The K-means clustering algorithm finds an approximate solution by alternating
optimization: initialize µ1 . . . µK ∈ RD and iterate

ai =
K

argmin
k=1

δ(ui, µk) ∀i ∈ {1 . . . N} (7)

µk = argmin
µ∈RD

N∑
i=1: ai=k

δ(ui, µ) ∀k ∈ {1 . . .K} (8)

Since each step can never increase the loss, the algorithm will converge to a local optimum (whose quality depends
on the initialization scheme). The assignment problem (7) is easy assuming δ is efficiently computable. The centroid
optimization (8) is also easy for a large class of distortion functions: in fact, if δ is a Bregman divergence (including

the squared Euclidean distance δ(u, v) = ||u− v||2), (8) is given in closed form by the mean of the points assigned
to the k-th code:

µk =
1

|{i : ai = k}|

N∑
i=1: ai=k

ui (9)

The algorithm is also related to the expectation maximization (EM) algorithm. When δ is the squared Euclidean
distance, it coincides with hard EM for a K-mixture of Gaussians where (7) is the E-step and (8) is the M-step.

A.1 Inner Product Variant

If we set δ(u, v) = −⟨u, v⟩ in (6), the distortion function is unbounded so there is no solution. But we can consider
maximizing cosine similarity, which yields the objective

max
µ1...µK∈RD

a1...aN∈{1...K}

N∑
i=1

⟨ui, µai
⟩

||ui|| ||µai
||

WLOG assume ||ui|| = 1 for all i and constrain the centroids to have unit norm. The objective becomes

max
µ1...µK∈RD: ||µk||=1 ∀k

a1...aN∈{1...K}

N∑
i=1

⟨ui, µai
⟩

We can again perform alternating optimization: initialize µ1 . . . µK ∈ RD with normalization so that ||µk|| = 1 and
iterate

ai =
K

argmax
k=1

⟨ui, µai
⟩ ∀i ∈ {1 . . . N}

µk = argmax
µ∈RD: ||µ||=1

N∑
i=1: ai=k

⟨ui, µ⟩ ∀k ∈ {1 . . .K}

It is easy to verify (e.g., by Lagrangian relaxation) that µk is given by (9) plus renormalization. This variant
is called spherical K-means. The only difference from the usual K-means is that we preprocess the inputs to
have unit norm and renormalize the centroids in the M-step. It coincides with hard EM for a K-mixture of von
Mises-Fisher distributions over a unit sphere.

A.2 Product Quantization

A limitation of basic quantization (10) is that it is difficult to use a large number of clusters since the size of
the codebook C ∈ RK×D grows linearly in K. To address this limitation, we can consider decomposing RD into
M orthogonal subspaces each with dimension d := D/M , and quantizing in the subspaces independently. Let
sub(u, j) ∈ Rd denote the j-th sub-vector of u ∈ RD (i.e., projection onto the d-dimensional subspace spanned by
the orthonormal basis ej . . . ej+d−1 ∈ RD). For j = 1 . . .M , we compute a “sub-codebook” in the j-th subspace:

Cj =
(
µ
(j)
1 . . . µ

(j)
K

)
∈ RK×d ← Quantize

(
{sub(ui, j)}Ni=1 ,K

)

This is product quantization (PQ) (Jegou et al., 2010), where we define

codej(u) =
K

argmin
k=1

δ(sub(u, j), µ
(j)
k) q(u) =

µ
(1)
code1(u)

...

µ
(M)
codeM (u)

 (10)

Importantly, q(u) ∈ RD can output any of KM centroid combinations. Since we quantize each subspace inde-
pendently, the runtime and memory grows linearly in M , but the size of the output space grows exponentially in
M .

A limitation of PQ is that it is hardcoded to the standard basis. Consider the examples with D = 2 and M = 2:

PQ is successful in the first example, but not so in the second.

A.2.1 PQ with rotation.

We can alleviate the limitation of PQ by simultaneously optimizing the basis of RD. That is, instead of insisting
on using the standard basis ID×D, we allow for any orthonormal basis that may yield a smaller quantization error.

We can formalize this compactly in matrix form. Let X = (u1 . . . uN) ∈ RN×D and A = {(a1 . . . aN) ∈ {0, 1}N×K
:

||ai||1 = 1 ∀i}. With the square Euclidean distance as distortion, we optimize

min
C1...CM∈RK×d

A1...AM∈AN×K

R∈RD×D: R⊤R=ID×D

||X − [A1C1 . . . AMCM]R||2F (11)

We can again consider alternating optimization with some initial value of C1 . . . CM and orthogonal R (e.g., R =

ID×D). Holding R fixed, we optimize
∣∣∣∣X − [AjCj]

M
j=1R

∣∣∣∣2
F

=
∣∣∣∣XR⊤ − [AjCj]

M
j=1

∣∣∣∣2
F

over the sub-codebooks Cj

and assignments Aj . This can be done by the usual PQ on XR⊤ ∈ RN×D. Holding B = [A1C1 . . . AMCM] ∈ RN×D

fixed, we compute the optimal rotation matrix in closed form:

R∗ = argmin
R∈RD×D: R⊤R=ID×D

||X −BR||2F = argmax
R∈RD×D: R⊤R=ID×D

tr
(
X⊤BR

)
= V U⊤

where UΣV ⊤ ∈ RD×D denotes the SVD of X⊤B. The final equality can be quickly verified by von Neumann’s trace
inequality. Using the fact that the singular values of a rotation matrix are ones, the objective is upper bounded as
tr
(
X⊤BR

)
≤ tr (Σ). Setting R = V U⊤ achieves this upper bound.

Some history: PQ with rotation was first formalized by Norouzi and Fleet (2013) as Cartesian K-means. It was
also investigated concurrently by Ge et al. (2013), who additionally presented a parametric model and popularized
the term OPQ (optimized PQ) for this method.

A.3 Hierarchical Variant

If the data is generated hierarchically (e.g., from a hierarchical mixture distribution), we can adapt the quantization
scheme to fit the data accordingly. Consider the example:

which might have been generated by a mixture of 2 GMMs that are shifted versions of one another. Naively we can
use a quantizer with K = 6 centroids. We can alternatively consider a hierarchical scheme where we use a “coarse”
quantizer qc : RD → {µ1, µ2} ⊂ RD and a refinement quantizer qr : RD → {ν1, ν2, ν3} ⊂ RD. The final quantizer is

q(u) = qc(u) + qr(u− qc(u))

The coarse and refinmenet quantizers can be trained in a pipeline where qc is trained to minimize the distortion on the
originalN inputs u1 . . . uN , then qr is trained to minimize the distortion on theN residuals u1−qc(u1) . . . uN−qc(uN)
(which have potentially much lower variance).

B Triangulation

A d-simplex ∆d is the simplest possible polytope (i.e., geometric object with flat sides) with d dimensions. For
instance, ∆0 is a point, ∆1 is a line, ∆2 is a triangle, and ∆3 is a tetrahedron. We may define it as ∆d =
conv(def(∆d)) where def(∆d) ⊂ Rd is a set of d + 1 affinely independent “defining” points of ∆d and conv is
the convex hull. Any S ⊂ def(∆d) of size m + 1 defines an associated m-face of ∆d by f = conv(S) (thus f
is an m-simplex itself). We call 0-faces vertices, 1-faces edges, (d − 1)-faces faucets of ∆d (the d-face is ∆d).
A simplicial complex is a set of (possibly various dimensional) simplices K such that (1) if f is a face of some
∆ ∈ K, then f ∈ K, and (2) if ∆,∆′ ∈ K and σ = ∆ ∩∆′ ̸= ∅, then σ is a face in each of ∆ and ∆′.

simplicial complex two traingulations of X ⊂ R2 a triangulation of X ⊂ R3

Let X ⊂ Rd be a set of N points. A (point-set) triangulation of X is a (not necessarily unique) simplicial
complex that covers conv(X), with vertices in X . Under a mild non-collinearity assumption, we can always find a
triangulation by starting from a singleton and adding each point, connecting it to all vertices of the convex hull of
the previously added points. With presorting, it can be done in O(N logN) time. A triangulation constructed this
way is called a scan triangulation.

On the plane. In R2, we can give a simpler definition as a maximal planar (i.e., no edges crossing each other)
subdivision whose vertices are X . The number of triangles and edges in any triangulation is counted as T =
2V − V ′ − 1 and E = 3V − V ′ − 3, where V = N and V ′ ≤ V is the number of outermost vertices.5

B.1 Delaunay Triangulation

A Delaunay triangulation of X , denoted DT(X), is a triangulation of X that maximizes the smallest angle
between any two edges. In this section, we show examples from Gärtner and Hoffmann (2013).

5By Euler’s formula for planar graphs, V − E + F = 2 where F = T + 1 is the number of faces (in this context, triangles plus the
unbounded outer region). The number of edge-face pairs can be counted as either 2E (each edge borders two faces) or 3(F − 1) + V ′

(each triangle borders three edges, and the outer region borders V ′ outermost edges). The claim can be verified by solving the equations.

non-Delaunay (scan) Delaunay

An equivalent characterization of a Delaunay triangulation is as follows: it is a triangulation of X such that the
circumsphere of any ∆d (i.e., hypersphere that touches the vertices of ∆d) in DT(X) is empty. On the plane, the
condition is that the circumcircle of any triangle is empty. Not every triangulation satisfies this condition, and one
that does has a larger smallest angle, as shown below.

non-Delaunay Delaunay

Existence and uniqueness of a Delaunay triangulation is guaranteed under a mild “non-cocircularity” condition on
X .6

Computation. It turns out finding DT(X) can be reduced to finding the convex hull of the (d+ 1)-dimensional

projection of X onto a hyperboloid Xlifted = {(x, ||x||2) ∈ Rd+1 : x ∈ X}, then projecting it back to the first
d dimensions (i.e., discard the last dimension). This leads to an incremental algorithm called the Lawson flip
algorithm that starts with some triangulation and modifying a subtriangulation of d+ 2 points that violates the
condition, which corresponds to “segmenting” the bottom part of the projection.

The algorithm takes O(N2) time. There are other incremental algorithms that take O(N logN). Unfortunately, the
number of ∆d in DT(X) is O(Nd), so the runtime of any algorithm is exponential in dimension (since the number
of neighbors to maintain grows exponentially in d).

Duality. Under mild conditions, there is a one-to-one correspondence betweenDT(X) and theVoronoi diagram
of X = {x1 . . . xN}, denoted by VD(X), which induces a partition of Rd into N cells where the i-th cell is
VDi(X) = {u ∈ Rd : ||u− xi|| ≤ ||u− xj || ∀j ̸= i}. Specifically,

• Each circumcenter of ∆d ∈ DT(X) corresponds to a vertex in VD(X).

• Two vertices in VD(X) are connected iff the corresponding simplices in DT(X) are adjacent.

A Delaunay triangulation with circumcenters and the corresponding Voronoi diagram are shown below (figures from
Wikipedia):

6The affine hull is d-dimensional and no set of d+ 2 points lie on the boundary of a ball whose interior does not intersect X .

It follows that DT(X) is the minimal connected planer graph over X such that when we move from one vertex to
another, we move to the corresponding neighboring Voronoi cell. Note that it is different from the nearest neighbor
graph (NNG) which is not guaranteed to be connected, or the Euclidean minimum spanning tree (EMST). But
NNG and EMST are subgraphs of DT(X).

C Graph-Based Search

Suppose we have N target vectors and are interested in finding the target closest to a given query under some
metric. One way to avoid exhaustive search is to assume a graph structure over the targets and, starting from some
initial vertex, greedily optimize the metric by moving to a neighboring target.

GreedyGraphSearch
Input: graph G = (V,E) where V ⊂ Rd and N = |V |, metric dist : Rd × Rd → [0,∞), target vertex t ∈ Rd, initial
vertex s ∈ V
Output: estimation of u∗ = argminu∈V dist(u, t)

1. Initialize u(0) ← s and n← 0.

2. While there exists v ∈ V such that (u, v) ∈ E and dist(v, t) < dist(u, t): set n← n+ 1 and

u(n) ← argmin
v∈V : (u(n−1),v)∈E

dist(v, t)

3. Return the locally optimal u(n) ≈ u∗ and the number of steps n ≤ N

Generally there is no guarantee that u(n) is globally optimal. The graph might not even be complete so that there
is no path between s and t. Even if the graph is complete, the algorithm may converge to a local but not global
optimum depending on the edge structure.

C.1 Navigable Small World Graphs

Kleinberg considers a random graph over N points on the plane that contains the N by N grid as a subgraph plus
some stochastic “long-range” edges and asks if the graph has the following properties:

1. (Small) There exists a “short” path between any two vertices with length O(logN).

2. (Navigable) GreedyGraphSearch follows a short path.

Note that the greedy search will eventually return the target vertex thanks to the grid subgraph. A graph that
satisfies both properties is called a navigable small world. It is possible that a graph is small but not navigable.
For instance, if the long-range edges are drawn uniformly at random, random graph theory gives us that there
exists a short path between any two vertices, but the greedy algorithm will not find it (special case of the following
theorem with r = 0).

Theorem C.1 (Kleinberg (2000)). Let G = (V,E) be a graph where V = {1 . . . N}2, the distance between two
vertices is measured by the number of hops dist(u, v) = ||u− v||1, and E is constructed stochastically as follows:
for each u ∈ V

• Add (u, v) for every v ∈ V within p hops: dist(u, v) ≤ p.

• For q times, add (u, v) where v ∈ V is sampled with probability dist(u,v)−r∑
v′∈V dist(u,v′)−r .

Draw s, t ∈ V uniformly at random and run u(n) = t← GreedyGraphSearch(G,dist, t, s). Then

• If r ̸= 2, then E[n] = Ω(N c) for some c that depends on r.

• If p = q = 1 and r = 2, then E[n] = O(logN).

Note that r = 2 is the only value that yields navigability. The result has been generalized to d-dimensional grids
where we need r = d (i.e., a long-range edge (u, v) is sampled with probability ∝ dist(u, v)−d). The result has
also been generalized to non-grid topologies. For instance, a Delaunay triangulation can be made a navigable small
world by inserting appropriate long-range random edges (Beaumont et al., 2007).

C.2 Approximate Navigable Small Delaunay Triangulation

The conceptually ideal graph for greedy nearest neighbor search is a navigable small Delaunay triangulation, since

1. The Delaunay triangulation is the minimal graph (i.e., has fewest edges) that allows for exact greedy search.
Due to its duality to the Voronoi diagram, every step of GreedyGraphSearch over the graph will strictly
decrease the distance between the query and the global optimum until convergence.

2. If the graph is navigable small, GreedyGraphSearch will find it in O(logN) time. Thus we achieve exact
search in time logarithmic in N .

However, in practice we do not need this precise ideality. Even if the graph is faulty so that local search tends to get
stuck in a local optimum, we can combat it by (1) trying many times from random initial points, and (2) keeping
K hypotheses instead of one (which is probably what we want even if the search is exact since the topology itself
might be faulty). To this end, Malkov et al. (2014) propose a K-nearest-neighbor graph search heurstic, detailed
below.

KNNGraphSearch
Input: graph G = (V,E) where V ⊂ Rd and N = |V |, metric dist : Rd ×Rd → [0,∞), target vertex t ∈ Rd, number
of random searches m, number of nearest neighbors K
Output: K approximate nearest neighbors to t under dist
Data structure: TreeSet for storing a set K vectors u ∈ Rd in increasing dist(t, u) (it uses a self-balancing binary
search tree (Red-Black) to enable O(logN) time add/search operations)

1. Initialize S ← TreeSet(∅).

2. For m times:

(a) Initialize Strial ← TreeSet({s}) where s ∼ Unif(V).

(b) Loop:

i. u← Strial.pop()

ii. If dist(u, t) > S.last(): break

iii. Add every unvisited neighbor of u to Strial.

(c) S.add(Strial.dump())

3. Return S.dump() ⊂ V .

The K-NN search can be used to build a connected graph:

BuildKNNGraph
Input: X ⊂ Rd, metric dist : Rd × Rd → [0,∞), number of random searches m, number of nearest neighbors K
Output: graph G = (V,E), intended as an approximation of a navigable small Delaunay triangulation DT(V)

1. Initialize V ← ∅ and E ← ∅.

2. For x ∈ X in some order:

(a) S ← KNNGraphSearch(G = (V,E),dist, x,m,K)

(b) Set V ← V ∪ {x} and E ← E ∪ {(u, x) : u ∈ S}.

3. Return G = (V,E).

It is empirically shown that G ← BuildKNNGraph(X , ||u− v|| , 20, 10) (i.e., 20 random restarts, 10 nearest
neighbors in the Euclidean space) needs on average O(logN) hops between two nodes for various values of d.
Furthermore, both the search and graph construction can be parallelized. The authors report 0.999 recall while
visiting only 0.031% of the vertices, with a suitable choice of hyperparameters.

D Geometric Distribution

We say X ∈ {0, 1, 2, . . .} is geometrically distributed with parameter 0 < p ≤ 1 and write X ∼ Geo(p) if

Pr(X = k) = (1− p)kp

(i.e., X is the number of failures before we get a success where the success probability is p). The mean and variance
is E[X] = 1−p

p and Var (X) = 1−p
p2 . We say Y ∈ [0,∞) is exponentially distributed with parameter λ > 0 and

write Y ∼ Exp(λ) if

Pr(Y = y) = λe−λy

The mean and variance is E[Y] = 1
λ and Var (X) = 1

λ2 . The floor of Y is geometrically distributed:7

⌊Y ⌋ ∼ Geo
(
1− e−λ

)
(12)

If U ∈ [0, 1] is uniformly distributed, the following also holds:⌊
log(U)

log(1− p)

⌋
∼ Geo (p)

In particular, setting p = 1− e−
1
m where m > 0 yields

T = ⌊− log(U)m⌋ ∼ Geo
(
1− e−

1
m

)
Then by the relationship (12) we also have

T = ⌊Z⌋ Z ∼ Exp

(
1

m

)
where E[Z] = m and Var (Z) = m2.

E Expected Maximum

E.1 Exact Solution

Lemma E.1. Let X1 . . . XN ∼ Exp(λ) be iid where λ > 0. Then

E
[

N
max
i=1

Xi

]
=

1

λ

N∑
k=1

1

k
(13)

Proof I. For any x ≥ 0, we have the CDF Pr(Xi ≤ x) = 1 − e−λx. Letting Y := maxNi=1 Xi and using the
independence, we have Pr(Y ≤ x) = (1− e−λx)N . Then

E [Y] =

∫ ∞

0

Pr(Y > x)dx (expectation in CDF)

=

∫ ∞

0

1− (1− e−λx)Ndx

=
1

λ

∫ 1

0

1− uN

1− u
du (u-substitution: u = 1− eλx)

=
1

λ

∫ 1

0

N−1∑
k=0

ukdu (geometric sum)

=
1

λ

N−1∑
k=0

(
1

k + 1
uk+1

) ∣∣∣∣1
0

=
1

λ

N∑
k=1

1

k
(14)

Details of the u-substitution are as follows:
∫∞
0

f(g(x))dx =
∫ g(∞)

g(0)
f(u)

g′(g−1(u))du where f(u) = 1 − uN and g(x) =

1− e−λx, so that g−1(u) = −(1/λ) log(1− u) and g′(x) = λe−λx yield g′(g−1(u))−1 = λ(1− u).

7Aside: with λ = 1, we have the probability 1− e−1 of selecting a particular element in a set of N unique items in N random draws
as N → ∞, since limN→∞(1− 1

N
)N = 1

e
.

https://en.wikipedia.org/wiki/Expected_value#Properties
https://en.wikipedia.org/wiki/Geometric_series#Closed-form_formula

Proof II. Let X(i) denote the i-th order statistic (i.e., i-th smallest value) of {X1 . . . XN}. Since X(N) = maxNi=1 Xi,
we can write

N
max
i=1

Xi = X(1) + (X(2) −X(1)) + · · ·+ (X(N) −X(N−1))

= X(1) + S1 + · · ·+ SN−1

where Si := X(i+1) −X(i). For i ∈ {1 . . . N − 1}, given t ≥ 0 we have

Pr(Si > t) = Pr(X(i+1) −X(i) > t)

= Pr

(
min {X1 . . . XN−i} −X(i) > t

∣∣∣∣min {X1 . . . XN−i} ≥ X(i)

)
= Pr

(
Zi > X(i) + t

∣∣∣∣Zi ≥ X(i)

)
= Pr (Zi > t) (15)

where (15) follows from the fact that Zi := min {X1 . . . XN−i} is distributed as Exp((N − i)λ) and, consequently,
is memoryless. Thus

E
[

N
max
i=1

Xi

]
= E

[
X(1)

]
+E [S1] + · · ·+E [SN−1]

= E [Z0] +E [Z1] + · · ·+E [ZN−1]

=
1

Nλ
+

1

(N − 1)λ
+ · · ·+ 1

λ
=

1

λ

N∑
k=1

1

k

Since this also shows that Z0 . . . ZN−1 are independent, we can also give the variance formula

Var
(

N
max
i=1

Xi

)
= Var (Z0 + Z1 + · · ·+ ZN−1) =

N−1∑
j=0

Var (Zi) =

N−1∑
j=0

1

(N − j)2λ2
=

1

λ2

N∑
k=1

1

k2

Even though the geometric distribution can be obtained by discretizing the exponential distribution, it has no
simple closed-form like (13). See Eisenberg (2008) for an exact solution. But it is possible to give a simple bound.

Lemma E.2. Let X1 . . . XN ∼ Geo(p) be iid where 0 < p < 1. Then for λ = log(1
1−p) > 0,

E
[

N
max
i=1

Xi

]
∈

(
1

λ

N∑
k=1

1

k
, 1 +

1

λ

N∑
k=1

1

k

)
(16)

Proof. For any x ≥ 0, we have the CDF Pr(Xi ≤ x) = 1 − (1 − p)x+1. Letting Y := maxNi=1 Xi and using the
independence, we have Pr(Y ≤ x) = (1− (1− p)x+1)N . Then

E [Y] =

∞∑
x=0

Pr(Y > x) (expectation in CDF)

=

∞∑
x=0

1− (1− (1− p)x+1)N

=

∞∑
x=0

1− (1− e−(x+1)λ)N (p = 1− e−λ)

∈
(∫ ∞

0

1− (1− e−(x+1)λ)Ndx, 1− (1− e−λ)N +

∫ ∞

0

1− (1− e−(x+1)λ)Ndx

)
(integral test)

∈
(∫ ∞

0

1− (1− e−(x+1)λ)Ndx, 1 +

∫ ∞

0

1− (1− e−(x+1)λ)Ndx

)
=

(
1

λ

N∑
k=1

1

k
, 1 +

1

λ

N∑
k=1

1

k

)
(14)

https://en.wikipedia.org/wiki/Exponential_distribution#Distribution_of_the_minimum_of_exponential_random_variables
https://en.wikipedia.org/wiki/Exponential_distribution#Memorylessness
https://en.wikipedia.org/wiki/Expected_value#Properties
https://en.wikipedia.org/wiki/Integral_test_for_convergence#Remark

We use Euler’s constant γ ≈ 0.577 which satisfies

γ = lim
N→∞

(
N∑

k=1

1

k

)
− logN

to give the following corollaries.

Corollary E.3. Let λ > 0. For a large enough N ,

E
x1...xN∼Exp(λ)

[
N

max
i=1

xi

]
≈ 1

λ
(logN + 0.577)

Corollary E.4. Let 0 < p < 1 and λ = log(1
1−p) > 0. For a large enough N ,

1

λ
(logN + 0.577) ⪅ E

x1...xN∼Geo(p)

[
N

max
i=1

xi

]
⪅ 1 +

1

λ
(logN + 0.577)

E.2 Upper Bounds

Fact E.5 (AM-GM inequality). For any x1 . . . xN ≥ 0

1

N

N∑
i=1

xi ≥

(
N∏
i=1

xi

)1/N

with equality iff x1 = · · · = xN .

Lemma E.6. Let N ≥ 2 and X1 . . . XN be random variables, each with an MGF mi(t) := E[exp(tXi)] for
t ∈ Dom(mi) ⊂ (−∞,∞). Let m be an upper bound m(t) ≥ mi(t) for all t ∈ Dom(m) := ∩Ni=1Dom(mi). Let
Dom>0(m) := Dom(m) ∩ (0,∞). For any t∗ ∈ Dom>0(m) such that m(t∗) = N :

E
[

N
max
i=1

Xi

]
≤ 2 logN

t∗

Proof. Let Y := maxNi=1 Xi. For any t ∈ Dom>0(m)

exp (tE [Y]) ≤ E [exp (tY)] = E
[

N
max
i=1

exp (tXi)
]
≤

N∑
i=1

E [exp (tXi)] ≤ Nm(t)

where the first inequality is Jensen’s (using the fact t > 0), the equality follows from the monotonicity of exp,
the second inequality uses the positivity of exp and also the fact t ∈ Dom(mi) for all i = 1 . . . N , and the final
inequality is the premise. Taking the log on both sides yields

E [Y] ≤ logN + logm(t)

t
∀t ∈ Dom>0(m) (17)

For t such that m(t) > 1, we can use the AM-GM inequality to lower bound the right hand side:

logN + logm(t)

t
=

2 logN
t + 2 logm(t)

t

2
≥

2
√
logN × logm(t)

t
∀t ∈ Dom>0(m) : m(t) > 1

The bound is tight for t ∈ Dom>0(m) with m(t) = N . Plugging it in (17), we have E [Y] ≤ 2 logN
t for all such

t.

Examples. We can solve for t∗ > 0 when X1 . . . XN are identical samples of a known distribution.

• Xi ∼ N (0, σ2) where σ2 > 0: The MGF is m(t) = exp(σ
2t2

2) with domain (−∞,∞). When we solve m(t) = N

we get t∗ =
√
2 logN
σ ∈ (0,∞), hence

E
x1...xN∼N (0,σ2)

[
N

max
i=1

xi

]
≤ σ

√
2 logN

https://en.wikipedia.org/wiki/Euler%27s_constant

• Xi ∼ Gamma(k, θ) where k, θ > 0: The MGF is m(t) = (1 − θt)−k with domain (−∞, 1
θ). When we solve

m(t) = N we get t∗ = 1−N−1/k

θ ∈ (0, 1
θ), hence

E
x1...xN∼Gamma(k,θ)

[
N

max
i=1

xi

]
≤ 2θ logN

1−N−1/k

Since Exp(λ) = Gamma(1, 1
λ), we also have

E
x1...xN∼Exp(λ)

[
N

max
i=1

xi

]
≤ 2 logN

λ(1− 1
N)

• Xi ∼ Geo(p) where 0 < p ≤ 1: The MGF is m(t) = p
1−(1−p)et with domain (−∞,− log(1 − p)). When we

solve m(t) = N we get t∗ = log(1− p
N)− log(1− p) ∈ (0,− log(1− p)), hence

E
x1...xN∼Geo(p)

[
N

max
i=1

xi

]
≤ 2 logN

log(1− p
N)− log(1− p)

	Setting
	Inverted File (IVF) Index
	Product Quantization (PQ) Index
	IVFPQ Index
	Hierarchical Navigable Small World (HNSW) Index
	Practical Issues
	Experiments

	Quantization
	Inner Product Variant
	Product Quantization
	PQ with rotation.

	Hierarchical Variant

	Triangulation
	Delaunay Triangulation

	Graph-Based Search
	Navigable Small World Graphs
	Approximate Navigable Small Delaunay Triangulation

	Geometric Distribution
	Expected Maximum
	Exact Solution
	Upper Bounds

