Hoeffding, Azuma, McDiarmid

Karl Stratos

1 Hoeffding (sum of independent RVs)
Hoeftfding’s lemma. If X € [a,b] and E[X] = 0, then for all ¢ > 0:
E[etX} < etQ(b—a)z/S

Proof. Since e'® is convex, for all = € [a, b]:
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where ¢(t) := ta + In ( )) We did the second step because we want
the form (b — a). Look at the derlvatlves of ¢:
N a
¢ (Jf) =a ﬁe_t(b a) _ i
¢H<.'L‘) _ —abet(b—a)

2
b - a a
(7 t(b—a) _ bi)

a(l ) —tlb=a)(h — q)?

for a:= =2
((1 7t b— a) + Q)Q b—a
B « (1 —a)etb-a) (b—a)? < (b—a)?
(L= a)emtt-a) + o) ((1—a)e~tt-) + q) - 4

u 1-u
We used the fact that the concave function u(1 — u) = u — u? achieves its maximum

of 1/4 at u=1/2.

Now we approximate ¢(t) at ¢ = 0 with the first-degree Taylor polynomial. The
Remainder theorem gives us that

o(t) = ¢(0) + %(b'(O) + R1(0) for some 6 € [0, ]
t2 t2(b — a)?

= 5(?//(9) < ]



Hoeffding’s inequality. Given iid random variables X ... X,, where X; € [a;, b;],
let Sy, == ", X;. Then for any € > 0:

P(Sym — E[Sp] > €) < 2/ ZiLi (bimai)’
Proof. Using the Chernoff bounding technique, we write for all ¢ > 0:

P(Syn — E[Sy] > €) = P(e!Sm~BlSnD) > ¢fe)
E[et(sm7E[Sm])],3*’56 by Markov
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— te is convex, we minimize it with ¢ = (bfﬁ, yielding the bound
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The proof suggests that the result can be generalized to variables that are not
necessarily independent, since we just need the expectation to break over a product.

2 Azuma (sum of martingale differences)

Conditional Hoeffding’s lemma. If V € [f(Z), f(Z) + ¢] and E[V|Z] = 0, then
for all £ > 0:

E[etV‘Z] < et2c2/8
Note that E[e!V|Z] is a random variable in Z.

Proof. Similar to the proof of Hoeffding’s lemma. Use a = f(Z),b = f(Z) + ¢ and
use E[|Z] instead of E[-]. O

V1, Vs, ... is called a martingale difference sequence wrt. Xi, X5, ... if
e V; is a function of X7 ... X,.
e E[|Vi]] < oo
e EVi1|X:...X]=0

IWithout Hoeffding’s lemma, we could handle the case X; € {0,1} by explicitly bounding the
non-centered quantity E[etX¢] = p;ef 4+ (1 —p;) = 1 —p;(et +1) < exp(—pi(et +1)) (here p; := E[X;])
and observing [[/*, E[e!X] < exp(—E[Sm](e! + 1)).



Azuma’s inequality. Given a martingale difference sequence V1, Vs, ... wrt. X1, Xo, ...

where V; € [fi(X1...X;1), fi(X1...Xi—1) + ¢] for some f; and ¢; > 0, for all € > 0:

m
ZVZ- > €
=1

Proof. For each k € [m], define S, := Zle Vi. By the law of iterated expectations
(LIE) Ex[X] = Ez[Ex|z[X]|Z]] (see the appendix):
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E < 2 /226

E[e'®*] = E[E[e!*| X, ... X}_1]|
where
E[etsk | X1 ... Xg—1] E[etskflewk [ X1 Xy
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[etSk=1] X ... inl]et%i/s

The second step holds because Si_1 only depends on Xj...Xy_1. The third step
holds by conditional Hoeffding’s lemma. Thus
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Use the Chernoff bounding technique on S,,:
P(S,, > €) = P(e'm > ¢')

<E [ets’”} et by Markov
2R, ef t
<e s ' by the above argument
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By minimizing the convex function tz% — te with ¢t = 4e/ Y% | ¢, we get the
bound e—2¢"/ i1 €F, O

3 McDiarmid (“Lipschitz” function of independent RVs)

McDiarmid’s inequality. Given iid random variables X7 ... X,,, € X, let f : X" —
R be function bounded in a Lipschitz-like manner as follows: for all z1 ... %, 2} € X,
there is some ¢; > 0 such that

If(x1. . i zm) — fler... 2| < o

Let f(S) := f(X1...X;). Then
P(f(S) = E[f(S)] > €) < e 2/ XL el

Proof. Define V := f(S) — E[f(S)]. Will show V = >, V; is a sum of bounded
margingale differences V; € [fi(X1...X;-1), fi(X1...X;—1) + ¢;]. Then Azuma’s
inequality gives the desired result.

Define V; := E[V|X; ... X;] — E[V|X; ... X;_1]. Note that each V; is a function of
X; ... X, and the telescoping sum gives

Y Vi=E[V|Xi.. X, =V

i=1



In addition, E[E[Vle P X1]|X1 N ~Xi—1] = E[V|X1 ‘e Xi—l] (by LIE), so we have
E[ViX:...X,_1] =E[E[V|X;...X;] - V|X;...X;_1] =0

Thus V; ...V, is a martingale difference sequence wrt. X ... X,,.2

Now bound V; in terms of Xy ... X;_1:

reX
Vi > inf E[V|X,...X; = 2] —E[V|X1...X;_1]
TeX

V;; S sup E[V|X1XZ:£L'] 7E[V|X1Xl_1] Wl
—1 Uz

Using the “Lipschitz” condition on f:

Wi — Ui = Ssup E[V|X1 .. X,L = .’I,‘] — E[V|X1 . Xz = ,CC/]
z,x'€X

= sup E[f(9)|X:1...X; =] - E[f(S)|X;...X; =1]

z, ' €X
<g¢
Thus W; < U;+c¢; and it follows V; € [U;, U;+¢;] where U, is a function of X; ... X;_1.
O

References. Appendix D of Foundations of Machine Learning (MRT), Chapter 12
of Probability and Computing (MU)

2We’ve constructed a doob martingale Zg, Z1, ..., Zm wrt. Xo = constant, X1,..., X,, for the
target quantity V. That is, Z; := E[V|Xo ... X;,] which gives V; = Z; — Z;_;.



4 Appendies

4.1 Crash Course on Conditional RVs

The proof of Azuma’s and McDiarmid’s inequality makes heavy use of conditional
expectations.

e Let’s say X is a random variable.
e Then Ex[X] is a constant.

e However, Ex |y [X|Y] is a random wvariable (random over Y)! We can only
compute a value for a specific y € Y

is a constant.

The law of iterated expectations (LIE)? states that

Ey[Ex)y[X|Y]] = Ex[X]
—— ~—
fnc of Y constant

Now that we know the definition, it’s pretty easy to show:

Ey [Exy[X|Y]] /PY =y) x Exy[X|Y =y] dy

/Py )x(/xPX|y(X:ac|Y:y)xx dx) dy

:/</Py(Y:y) X Pxjy (X =z|Y = y) dy) Xz dr
/ Px(X )X x dx
= EX
The same principle holds when we work with more than two variables:

Eyz[Exy,z[X|Y, Z]|Z] = Ex|z[X|Z]

fncof Y, Z fnc of Z

It basically says we're free to condition on anything as long as we eventually take
expectation over it.
4.2 Martingales
A sequence Zy, Z ... is a martingale wrt. Xg, X7... if

e 7, is a function of Xj...X;.

e E[|Z] <

e E[Z,1|Xo...Xi] = 2Z;

3 Also called the law of total expectation, the tower rule, the smoothing theorem, Adam’s Law.



A doob martingale is a martingale constructed as follows. Let Xg...X, be any
sequence. We are interested in Y that depends on all Xy ... X,,; we assume E[|Y]] <
o0o. We define Z; to be the expectation of Y given Xy ... X;:

To verify Z ... Z, is a martingale, we need to check the third condition:

E[Zi11|Xo... Xi| = E[E[Y|Xo ... Xip1]| X0 ... Xi] by def
—E[Y|Xo... X}] by LIE

For instance, consider a sequence of rewards in n independent fair gambles: X7 ... X,
where E[X;] = 0. We are interested in the total reward Y = Y | X;. Then our
doob martingale is given by

n

Zi =Y EX;|X1...X)]=> X
j=1

Jj=1

since E[X;|X,...X;] = E[X;] = 0 for j > i. Le., the refined estimate of the total
reward at time 4 is simply the sum up to that time.

By construction, if Zy, Z1, ... is a martingale wrt. Xg, X1, ..., then V1, V5, ... defined
by

Vii=2;—Z;
is a martingle difference sequence defined before since
o V, =27, — Z;_1is a function of X;...X;.
e E[|Vi[ = E[|Zi — Zi1]] < o0
e E[Vi1|X1... X)) =E[Z;1]|X1...X,]-Z,=0



