Variable Elimination and Belief Propagation
in Graphical Models

Karl Stratos

We write X = (X;...X,) € X" to denote n discrete random variables. Let K = |X|.
We write £ = (z1...2,) to mean a specific configuration of X. Similarly, if X’
is a subset of X, then we write 2’ to mean a specific configuration of that subset.
Graphical models express a distribution over X in terms of nodes and edges.

1 Types of Graphical Models

A directed graphical model (DGM), or Bayesian network, is a directed acyclic
graph (DAG) that represents the chain rule applied on p(X), optionally with Markov
assumptions (e.g., HMMs, generative probabilistic neural models). If pa(X;) C X
denotes the parent nodes of X; under a DGM, then it is parameterized by local
distributions p(X;|pa(X;)) to define

n

p(X) =] p(Xilpa(X.))

i=1

An undirected graphical model (UGM), or Markov random field (MRF),
is an undirected graph on X that establishes certain local conditional independence
assumptions with edges. By the Hammersley-Clifford theorem, a UGM is equiva-
lently characterized by its maximal cliques C. It is parameterized by nonnegative
potential functions 1.(c(X)) > 0 for all ¢ € C. The “unnormalized energy” of a
particular configuration x is given by [[.co %c(c(x)). Using the normalization factor

Z =3 eec Yelc(x)), the UGM defines

p(X) = 2 [T wele(X))

ceC

2 Generalized Marginalization

We focus on the problem of marginalizing X’ C X in an UGM. Marginalizing can
be summation, maximization, or something else (see below). This also handles DGMs
since we can write [[, P(X;|pa(X;)) into an equivalent UGM, [\, ¥:(ci(X)),
where each of the n cliques ¢;(X) = {X;} U pa(X;) has potential P(X;|pa(X;))
(with the normalization factor Z = 1). The creation of new undirected edges between
parents is called moralization.

2.1 Setup

We consider any operation @ and ® that form a commutative semiring (i.e., they
are commutative and distributive with identity elements). Given X’ C X of size m,

https://en.wikipedia.org/wiki/Markov_random_field#Definition
https://en.wikipedia.org/wiki/Markov_random_field#Definition

the marginalization problem is posed as

PR vele(x : X' =2')) (1)

z’ ceC

Note that a naive calculation looping through all possible configurations of X’ takes
O(K™).

One common use of marginalization is to calculate a marginal distribution. In this
case, a @b = a + b (identity 0) and a ® b = ab (identity 1). Assuming Z = 1 for
simplicity, the distribution over a subset ¥ C X is given by summing over all possible
configurations of X' = X\Y.

p(v) =S p(via) = ST vele(X : X' = 2))

z’ ceC

A slight variant of this problem can be used to calculate the log normalization factor
log Z in log space. In this case, a @ b = logsumexp(a,b) := log(exp(a) + exp(bh))
(identity —oo) and a ® b = a + b (identity 0). Then

log Z =log» [] velc(@)) = logsumexp > log te(c(x))

z ceC ceC

Another common use of marginalization is for maximum a posteriori probability
(MAP) estimate. In this case, a ®b = max(a,b) (identity 0) and a ® b = ab (identity
1). If O and H partition X into observed and hidden variables, calculating the most
probable configuration of H with O = o boils down to calculating

m}zl%xp(O =o0,H=h)= max gwc(c(O =o0,H =h))

2.2 The Variable Elimination Algorithm

The variable elimination (VE) algorithm uses the fact that for any functions f, g over
discrete variables,

DD wegb)= (EB f(a)> ® (EBQ(@)
a b a b

This follows from the commutative and distributive properties of & and ®. VE solves
the generalized marginalization problem (1) in a potentially efficient way. Given
an elimination ordering X ... X/ of variables in X', at each step it views the
function @, e(c(X : X' = 2’)) as a product of a function f of X] and a function
g of = X! = X\ X!. Then it uses the above fact and sums f over X/:

PP rah)eg-a)) = (P rah) | @ | Pal-ad)

Importantly, f(X/) can involve variables other than X/. For example, if f(X]) =

Y XL Xa}) @ v({X], X2}) @ Y({X], X3}), then eliminating X/ creates a new three-
dimensional table €, f(x}) over all possible configurations of X, X5, X3.

VE

Input: UGM over X with maximal cliques C' and potential functions ¥.(c(X)),
commutative semiring (@, ®), subset X’ C X of size m, elimination ordering
X1 ...X,, of variables in X’

Output: @, Q. ¢ Ye(c(X : X' =2"))
1. Fori=1...m—1,

(a) Let C; denote the set of all current cliques that include X; and let
D, = C:)\ {X]}.

(b) Fully connect D; into a clique with potential

Gi(Di) == P Q) pele(X : Xi = 7))

ac; ceCy

(c) Eliminate X/ from the graph.
2. Return @, vc(c(X : X,, = z7,)).

The asymptotic runtime of VE is O(mK¢?) where d is the size of the largest clique
induced in the elimination process. This is simply because it creates a table of K¢
entries (see the example below). The induced width of a UGM given an elimination
ordering X7 ... X/, is the size of the largest induced clique minus 1 (hence “width”).
Unfortunately, finding an elimination ordering that has the minimum induced width
is generally NP-hard (Arnborg et al., 1987).

20

Each clique (X;, X;) has potential ;;(X;, X;): this is just a table with K? entries.
Say we want to calculate the normalization factor

Example. Consider the UGM

Z = Z Vr2(w1, T2)P13(21, T3) Y14 (21, Ta) 25 (T2, ¥5) 35 (23, T5)thas (24, T5)

r1...T5
which would take O(K?®) time to naively enumerate all configurations. In contrast,

applying VE on the elimination ordering X, X3, X4, X5, X; looks like

zZ = > v13(z1, 23)¥14(z1, 24)¥35(23, 25)Pa5 (24, ©5) <Z '¢12(11v$2)'¢25(1’2v$5)>
r3,T,TH,T] T

$2(21,25)

= > Y14(w1, w)Ya5 (2, v5) b (21, T5) (Z w13<117r3)w35<13715)>
=3

T4,75,%

$3(21,25)

> o2 (21, 25)0°% (21, 25) (Z 14wy, w4)bys(2g, w5)>
r5,T] Ty

¢4 (z1,25)

which involves K2 + K? + K? + K? = O(K?) operations. But applying VE on the
elimination ordering X1, X2, X3, X4, X5 looks like

zZ = > Y5 (22, 25)¥35(w3, v5)Pas5(2g, T5) (Z '¢>12(117w2)'¢’13(117w3)'¢’14($17w4)>
T2,T3,T4,Th x1

ypl(ag,23,24)

= > ¥3s(z3,w5)va5(es, o5) (}:1p25<12,15)w1(12,z3,14)>
=3

x3,74,25

p2(23,24,5)

= > vas(eq, @5) (Zwsswsym5>w2(w3,z4,m5>>
LR T3

P3(zy,25)

which involves K* + K* + K® + K2 = O(K*) operations. We can generalize this
example to have N nodes each with pairwise connections to X; and X5: the first

elimination ordering takes O(NK?) whereas the second elimination ordering takes
O(NKN+1),

VE on trees (including chains). VE has guaranteed runtime O(mK?) on trees
because we can use a bottom-up traversal of nodes as our elimination ordering. This
ordering ensures that each elimination step never introduces a new clique of size bigger
than one, thus the size of the largest induced clique is d = 2. The O(mK?) forward
algorithm in first-order HMMs is simply VE with the left-to-right elimination ordering
of m state nodes. The forward algorithm in second-order HMMs takes O(mK?3)
because the size of the largest induced clique is d = 3 (between (H;_o, Hy_1, Hy) after
the DGM-to-UGM conversion).

3 Belief Propagation

Belief propagation (BP) on trees is nothing but VE on trees while caching in-
termediate tables (which are always one-dimensional) in elimination steps and calling
them messages. Once caching is done, we can easily obtain various marginal distri-
butions from the messages.

This is best explained by example. Recall that a tree (undirected) is simply an acyclic
connected graph G = (V, /). Consider the following tree on 7 variables

PX) = o (X0 (X oy (X (X (X)X (57)
12(X1, Xo)13(X1, X3)1034(X3, Xa)h35(X3, X5)1ha6(Xa, X6)tpar(Xy, X7)

Suppose we want to calculate p(X;). We can treat X; as the “root” and run VE
bottom-up as described above to marginalize out all “children” of Xj.

The VE algorithm looks like

p(X1) = Z 1 (X1)ab3(w3)ha(xa)P13(X1, 3)1h3a (s, T4)

<Z Yo (z2)h12(X1, CC2)> <Z Y5 (x5) Y35 (w3, 305)) (Z e (z6)as (x4, 906)) <Z 7 (x7)har(xa, 307))
H2—1(X1) p15—3(x3) 1e—a(za) 7 —a(za)

Z¢1 (X1)s(za)h1s (X1, x3) pa—1 (X1)pus—3(z3) (Z Y34 £E3,ZE4)¢)4($4)u644($4)u7ﬁ4($4)>

3 T4

pa—3(x3)

= ;w (X1)p2—1(X1) (Zws T3 1/J13(X1,$3)M5—>3($3)/A4—>3($3))

3

H3—1(X1)

= %1/}1()(1)/12%1()(1)/13%1()(1) (2)

We call intermediate tables j;,;(x;) by the message from i to j which is a function
of the subtree rooted at ¢ (away from j) over possible values of X;. What if we now
want to calculate p(X3)? We can certainly treat X3 as the root and run VE bottom-up

again:
(x2)
oo
O¥NO
Doing VE yields

p(X3) = ¢3(X3)M5—>3(X3)M4—>3 (X3) (Z P1(z1 ,u2—>1($1)1/113($1,X3)) (3)

x1

n1—-3(X3)

Note that we reuse much of the calculation in p(X;) when we calculate p(X3). The
only new calculation is the message from 1 to 3, since we didn’t need to pass message
in that direction before.

Belief propagation on trees means precomputing

Hi—j xJ sz xz /(/)Zj .’EZ,.’E]) H Mk%z(xl)

keneighbor(i)\{j}

for every edge (i,j) € E (both ways) where neighbor(i) := {k: (i,k) € E}. This
assumes that when 7 is messaging j, 7 already has messages from all neighbors k
except j. It is easy to see that this is guaranteed if we compute messages bottom-up
and then top-down. Another way to achieve this effect is to arbitrarily initialize all
messages and in parallel compute 1, ;(z;) for every edge (4,j) € E (both ways) for

D(QG) times where D(G) is the largest distance between any pair of nodes in G (called
the diameter of G).

Once all messages are precomputed, for any node i € V' we can calculate
1
p(Xi) = Zwi(Xi) || e 9
j€Eneighbor(i)

For example, see (2) and (3). Since this is supposed to be a probability distribution, we
can easily calculate the normalization factor by Z = -, vi(27) [[;cneighbor(i) Hi—i(27)-
We discuss two variants of this basic BP algorithm.

Locally normalized messages. We precompute messages with local normaliza-
tion:

Zij =Y | Y i) (i, 7)) 11 Fie—i ()

z; T keneighbor(i)\{j}
_ 1 _
Rimsj(2j) = —— D i)y (@i, xy) 11 [ig—i ()
) keneighbor(i)\{j}

Thus fi;—; € AK—=1 defines a probability distribution over the K values of X repre-
senting “prediction” of the value at j based on the subtree rooted at i (away from j).
After precomputation, we can again calculate the marginal distribution at any ¢ € V
by locally normalizing with [since

p(X;) = %%(Xi) I Aex) 11 Zji | o< bi(Xi) I A-ix)

jEneighbor(i) jEneighbor(i) jEneighbor(i)

constant wrt. X;

Locally normalized messages in log space. Note that

Visj(xj) = 1Og51}fllexp log ¥i(w;) + log ij(wi, 7;) + Z log fig—i(x;)
i keneighbor(i)\{j}

log ﬂi—)j(xj) = Visj (xj) - logSUI}leXP Vi—»j(x;‘)
Zj

and

p(Xi) o< exp | log¢i(z;) + Z log fij—i(2:)
j€Eneighbor(i)

Thus we can do BP entirely in log probability space.

3.1 Loopy Belief Propagation

Loopy belief propagation (LBP) is BP applied on a non-tree graph (i.e., it has
cycles) to approximate marginal probabilities. All messages are initialized to ones or
random values in [0, 1], and we keep updating messages until convergence (which may
not happen). After enough iterations of LBP, we approximate p(X;) by normalizing

wl(XZ) Hjeneighbor(i) MJ‘”(XZ)

References.
e Concise slides on BP

e Lecture note with good BP examples

http://computerrobotvision.org/2009/tutorial_day/crv09_belief_propagation_v2.pdf
http://helper.ipam.ucla.edu/publications/gss2013/gss2013_11344.pdf

	Types of Graphical Models
	Generalized Marginalization
	Setup
	The Variable Elimination Algorithm

	Belief Propagation
	Loopy Belief Propagation

