
Variable Elimination and Belief Propagation
in Graphical Models

Karl Stratos

We write X = (X1 . . . Xn) ∈ Xn to denote n discrete random variables. Let K = |X |.
We write x = (x1 . . . xn) to mean a specific configuration of X. Similarly, if X ′

is a subset of X, then we write x′ to mean a specific configuration of that subset.
Graphical models express a distribution over X in terms of nodes and edges.

1 Types of Graphical Models

A directed graphical model (DGM), or Bayesian network, is a directed acyclic
graph (DAG) that represents the chain rule applied on p(X), optionally with Markov
assumptions (e.g., HMMs, generative probabilistic neural models). If pa(Xi) ⊆ X
denotes the parent nodes of Xi under a DGM, then it is parameterized by local
distributions p(Xi|pa(Xi)) to define

p(X) =

n∏
i=1

p(Xi|pa(Xi))

An undirected graphical model (UGM), or Markov random field (MRF),
is an undirected graph on X that establishes certain local conditional independence
assumptions with edges. By the Hammersley-Clifford theorem, a UGM is equiva-
lently characterized by its maximal cliques C. It is parameterized by nonnegative
potential functions ψc(c(X)) ≥ 0 for all c ∈ C. The “unnormalized energy” of a
particular configuration x is given by

∏
c∈C ψc(c(x)). Using the normalization factor

Z =
∑

x

∏
c∈C ψc(c(x)), the UGM defines

p(X) =
1

Z

∏
c∈C

ψc(c(X))

2 Generalized Marginalization

We focus on the problem of marginalizing X ′ ⊆ X in an UGM. Marginalizing can
be summation, maximization, or something else (see below). This also handles DGMs
since we can write

∏n
i=1 P (Xi|pa(Xi)) into an equivalent UGM,

∏n
i=1 ψi(ci(X)),

where each of the n cliques ci(X) = {Xi} ∪ pa(Xi) has potential P (Xi|pa(Xi))
(with the normalization factor Z = 1). The creation of new undirected edges between
parents is called moralization.

2.1 Setup

We consider any operation ⊕ and ⊗ that form a commutative semiring (i.e., they
are commutative and distributive with identity elements). Given X ′ ⊆ X of size m,

1

https://en.wikipedia.org/wiki/Markov_random_field#Definition
https://en.wikipedia.org/wiki/Markov_random_field#Definition

the marginalization problem is posed as⊕
x′

⊗
c∈C

ψc(c(X : X ′ = x′)) (1)

Note that a naive calculation looping through all possible configurations of X ′ takes
O(Km).

One common use of marginalization is to calculate a marginal distribution. In this
case, a ⊕ b = a + b (identity 0) and a ⊗ b = ab (identity 1). Assuming Z = 1 for
simplicity, the distribution over a subset Y ⊆ X is given by summing over all possible
configurations of X ′ = X\Y .

p(Y) =
∑
x′

p(Y, x′) =
∑
x′

∏
c∈C

ψc(c(X : X ′ = x′))

A slight variant of this problem can be used to calculate the log normalization factor
logZ in log space. In this case, a ⊕ b = logsumexp(a, b) := log(exp(a) + exp(b))
(identity −∞) and a⊗ b = a+ b (identity 0). Then

logZ = log
∑
x

∏
c∈C

ψc(c(x)) = logsumexp
x

∑
c∈C

logψc(c(x))

Another common use of marginalization is for maximum a posteriori probability
(MAP) estimate. In this case, a⊕ b = max(a, b) (identity 0) and a⊗ b = ab (identity
1). If O and H partition X into observed and hidden variables, calculating the most
probable configuration of H with O = o boils down to calculating

max
h

p(O = o,H = h) = max
h

∏
c∈C

ψc(c(O = o,H = h))

2.2 The Variable Elimination Algorithm

The variable elimination (VE) algorithm uses the fact that for any functions f, g over
discrete variables,

⊕
a

⊕
b

(f(a)⊗ g(b)) =

(⊕
a

f(a)

)
⊗

(⊕
b

g(b)

)

This follows from the commutative and distributive properties of ⊕ and ⊗. VE solves
the generalized marginalization problem (1) in a potentially efficient way. Given
an elimination ordering X ′1 . . . X

′
m of variables in X ′, at each step it views the

function
⊗

c∈C ψc(c(X : X ′ = x′)) as a product of a function f of X ′i and a function
g of ¬X ′i = X ′\X ′i. Then it uses the above fact and sums f over X ′i:

⊕
x′
i

⊕
¬x′

i

(f(x′i)⊗ g(¬x′i)) =

⊕
x′
i

f(x′i)

⊗
⊕
¬x′

i

g(¬x′i)


Importantly, f(X ′i) can involve variables other than X ′i. For example, if f(X ′i) =
ψ({X ′i, X1})⊗ ψ({X ′i, X2})⊗ ψ({X ′i, X3}), then eliminating X ′i creates a new three-
dimensional table

⊕
x′
i
f(x′i) over all possible configurations of X1, X2, X3.

2

VE
Input: UGM over X with maximal cliques C and potential functions ψc(c(X)),
commutative semiring (⊕,⊗), subset X ′ ⊆ X of size m, elimination ordering
X ′

1 . . . X
′
m of variables in X ′

Output:
⊕

x′
⊗

c∈C ψc(c(X : X ′ = x′))

1. For i = 1 . . .m− 1,

(a) Let Ci denote the set of all current cliques that include X ′
i and let

Di = Ci\ {X ′
i}.

(b) Fully connect Di into a clique with potential

ψi(Di) :=
⊕
x′i

⊗
c∈Ci

ψc(c(X : X ′
i = x′i))

(c) Eliminate X ′
i from the graph.

2. Return
⊕

x′m
ψc(c(X : X ′

m = x′m)).

The asymptotic runtime of VE is O(mKd) where d is the size of the largest clique
induced in the elimination process. This is simply because it creates a table of Kd

entries (see the example below). The induced width of a UGM given an elimination
ordering X ′1 . . . X

′
m is the size of the largest induced clique minus 1 (hence “width”).

Unfortunately, finding an elimination ordering that has the minimum induced width
is generally NP-hard (Arnborg et al., 1987).

Example. Consider the UGM

X1

X3X2 X4

X5

Each clique (Xi, Xj) has potential ψij(Xi, Xj): this is just a table with K2 entries.
Say we want to calculate the normalization factor

Z =
∑

x1...x5

ψ12(x1, x2)ψ13(x1, x3)ψ14(x1, x4)ψ25(x2, x5)ψ35(x3, x5)ψ45(x4, x5)

which would take O(K5) time to naively enumerate all configurations. In contrast,
applying VE on the elimination ordering X2, X3, X4, X5, X1 looks like

Z =
∑

x3,x4,x5,x1

ψ13(x1, x3)ψ14(x1, x4)ψ35(x3, x5)ψ45(x4, x5)

∑
x2

ψ12(x1, x2)ψ25(x2, x5)


︸ ︷︷ ︸

φ2(x1,x5)

=
∑

x4,x5,x1

ψ14(x1, x4)ψ45(x4, x5)φ
2
(x1, x5)

∑
x3

ψ13(x1, x3)ψ35(x3, x5)


︸ ︷︷ ︸

φ3(x1,x5)

=
∑

x5,x1

φ
2
(x1, x5)φ

3
(x1, x5)

∑
x4

ψ14(x1, x4)ψ45(x4, x5)


︸ ︷︷ ︸

φ4(x1,x5)

3

which involves K3 + K3 + K3 + K2 = O(K3) operations. But applying VE on the
elimination ordering X1, X2, X3, X4, X5 looks like

Z =
∑

x2,x3,x4,x5

ψ25(x2, x5)ψ35(x3, x5)ψ45(x4, x5)

∑
x1

ψ12(x1, x2)ψ13(x1, x3)ψ14(x1, x4)


︸ ︷︷ ︸

ψ1(x2,x3,x4)

=
∑

x3,x4,x5

ψ35(x3, x5)ψ45(x4, x5)

∑
x2

ψ25(x2, x5)ψ
1
(x2, x3, x4)


︸ ︷︷ ︸

ψ2(x3,x4,x5)

=
∑

x4,x5

ψ45(x4, x5)

∑
x3

ψ35(x3, x5)ψ
2
(x3, x4, x5)


︸ ︷︷ ︸

ψ3(x4,x5)

which involves K4 + K4 + K3 + K2 = O(K4) operations. We can generalize this
example to have N nodes each with pairwise connections to X1 and X5: the first
elimination ordering takes O(NK3) whereas the second elimination ordering takes
O(NKN+1).

VE on trees (including chains). VE has guaranteed runtime O(mK2) on trees
because we can use a bottom-up traversal of nodes as our elimination ordering. This
ordering ensures that each elimination step never introduces a new clique of size bigger
than one, thus the size of the largest induced clique is d = 2. The O(mK2) forward
algorithm in first-order HMMs is simply VE with the left-to-right elimination ordering
of m state nodes. The forward algorithm in second-order HMMs takes O(mK3)
because the size of the largest induced clique is d = 3 (between (Ht−2, Ht−1, Ht) after
the DGM-to-UGM conversion).

3 Belief Propagation

Belief propagation (BP) on trees is nothing but VE on trees while caching in-
termediate tables (which are always one-dimensional) in elimination steps and calling
them messages. Once caching is done, we can easily obtain various marginal distri-
butions from the messages.

This is best explained by example. Recall that a tree (undirected) is simply an acyclic
connected graph G = (V,E). Consider the following tree on 7 variables

p(X) =
1

Z
ψ1(X1)ψ2(X2)ψ3(X3)ψ4(X4)ψ5(X5)ψ6(X6)ψ7(X7)

ψ12(X1, X2)ψ13(X1, X3)ψ34(X3, X4)ψ35(X3, X5)ψ46(X4, X6)ψ47(X4, X7)

Suppose we want to calculate p(X1). We can treat X1 as the “root” and run VE
bottom-up as described above to marginalize out all “children” of X1.

X1

X2 X3

X4 X5

X6 X7

4

The VE algorithm looks like

p(X1) =
1

Z

∑
x3,x4

ψ1(X1)ψ3(x3)ψ4(x4)ψ13(X1, x3)ψ34(x3, x4)(∑
x2

ψ2(x2)ψ12(X1, x2)

)
︸ ︷︷ ︸

µ2→1(X1)

(∑
x5

ψ5(x5)ψ35(x3, x5)

)
︸ ︷︷ ︸

µ5→3(x3)

(∑
x6

ψ6(x6)ψ46(x4, x6)

)
︸ ︷︷ ︸

µ6→4(x4)

(∑
x7

ψ7(x7)ψ47(x4, x7)

)
︸ ︷︷ ︸

µ7→4(x4)

=
1

Z

∑
x3

ψ1(X1)ψ3(x3)ψ13(X1, x3)µ2→1(X1)µ5→3(x3)

(∑
x4

ψ34(x3, x4)ψ4(x4)µ6→4(x4)µ7→4(x4)

)
︸ ︷︷ ︸

µ4→3(x3)

=
1

Z
ψ1(X1)µ2→1(X1)

(∑
x3

ψ3(x3)ψ13(X1, x3)µ5→3(x3)µ4→3(x3)

)
︸ ︷︷ ︸

µ3→1(X1)

=
1

Z
ψ1(X1)µ2→1(X1)µ3→1(X1) (2)

We call intermediate tables µi→j(xj) by the message from i to j which is a function
of the subtree rooted at i (away from j) over possible values of Xj . What if we now
want to calculate p(X3)? We can certainly treat X3 as the root and run VE bottom-up
again:

X3

X1

X4

X5

X2

X6

X7

Doing VE yields

p(X3) =
1

Z
ψ3(X3)µ5→3(X3)µ4→3(X3)

(∑
x1

ψ1(x1)µ2→1(x1)ψ13(x1, X3)

)
︸ ︷︷ ︸

µ1→3(X3)

(3)

Note that we reuse much of the calculation in p(X1) when we calculate p(X3). The
only new calculation is the message from 1 to 3, since we didn’t need to pass message
in that direction before.

Belief propagation on trees means precomputing

µi→j(xj) :=
∑
xi

ψi(xi)ψij(xi, xj)
∏

k∈neighbor(i)\{j}

µk→i(xi)

for every edge (i, j) ∈ E (both ways) where neighbor(i) := {k : (i, k) ∈ E}. This
assumes that when i is messaging j, i already has messages from all neighbors k
except j. It is easy to see that this is guaranteed if we compute messages bottom-up
and then top-down. Another way to achieve this effect is to arbitrarily initialize all
messages and in parallel compute µi→j(xj) for every edge (i, j) ∈ E (both ways) for

5

D(G) times where D(G) is the largest distance between any pair of nodes in G (called
the diameter of G).

Once all messages are precomputed, for any node i ∈ V we can calculate

p(Xi) =
1

Z
ψi(Xi)

∏
j∈neighbor(i)

µj→i(Xi)

For example, see (2) and (3). Since this is supposed to be a probability distribution, we
can easily calculate the normalization factor by Z =

∑
x′
i
ψi(x

′
i)
∏

j∈neighbor(i) µj→i(x
′
i).

We discuss two variants of this basic BP algorithm.

Locally normalized messages. We precompute messages with local normaliza-
tion:

Zij :=
∑
x′
j

∑
xi

ψi(xi)ψij(xi, x
′
j)

∏
k∈neighbor(i)\{j}

µ̄k→i(xi)


µ̄i→j(xj) :=

1

Zij

∑
xi

ψi(xi)ψij(xi, xj)
∏

k∈neighbor(i)\{j}

µ̄k→i(xi)

Thus µ̄i→j ∈ ∆K−1 defines a probability distribution over the K values of Xj repre-
senting “prediction” of the value at j based on the subtree rooted at i (away from j).
After precomputation, we can again calculate the marginal distribution at any i ∈ V
by locally normalizing with µ̄ since

p(Xi) =
1

Z
ψi(Xi)

 ∏
j∈neighbor(i)

µ̄j→i(Xi)

 ∏
j∈neighbor(i)

Zji


︸ ︷︷ ︸

constant wrt. Xi

∝ ψi(Xi)
∏

j∈neighbor(i)

µ̄j→i(Xi)

Locally normalized messages in log space. Note that

νi→j(xj) = logsumexp
xi

logψi(xi) + logψij(xi, xj) +
∑

k∈neighbor(i)\{j}

log µ̄k→i(xi)


log µ̄i→j(xj) = νi→j(xj)− logsumexp

x′
j

νi→j(x
′
j)

and

p(Xi) ∝ exp

logψi(xi) +
∑

j∈neighbor(i)

log µ̄j→i(xi)


Thus we can do BP entirely in log probability space.

3.1 Loopy Belief Propagation

Loopy belief propagation (LBP) is BP applied on a non-tree graph (i.e., it has
cycles) to approximate marginal probabilities. All messages are initialized to ones or
random values in [0, 1], and we keep updating messages until convergence (which may
not happen). After enough iterations of LBP, we approximate p(Xi) by normalizing
ψi(Xi)

∏
j∈neighbor(i) µj→i(Xi).

6

References.

• Concise slides on BP

• Lecture note with good BP examples

7

http://computerrobotvision.org/2009/tutorial_day/crv09_belief_propagation_v2.pdf
http://helper.ipam.ucla.edu/publications/gss2013/gss2013_11344.pdf

	Types of Graphical Models
	Generalized Marginalization
	Setup
	The Variable Elimination Algorithm

	Belief Propagation
	Loopy Belief Propagation

