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Abstract
The Gaussian distribution has many useful properties. Yet there are few resources that derive these properties

from scratch in a concise and comprehensive manner. This technical note is an ongoing effort to develop such
a resource. The statements are written as generally as possible, with clean and accessible proofs whenever
applicable. Some novel extensions of existing results are provided (e.g., to multivariate forms, non-iid noises).
Equipped with the results in this note, we are able to derive complex methods such as diffusion models and sparse
Gaussian processes with relative ease, in many cases by simply invoking the Gaussian chain rule and Bayes’ rule
(which themselves follow beautifully from block matrix operations) instead of calculating any integral.
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1 Definitions

Let µ ∈ Rd and Σ ∈ Rd×d≻0 . We assert Σ ≻ 0 (i.e., symmetric and positive-definite) to avoid handling degenerate
cases. The Gaussian distribution is a mapping N (µ,Σ) : Rd → [0, 1] defined as

N (µ,Σ)(x) :=
1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
(1)

which integrates to 1 over Rd (Lemma I.4) and is thus a valid probability distribution. The distribution has the
moment-generating function (MGF) of MX(t) = exp(t⊤µ + 1

2 t
⊤Σt) (Appendix D), which readily shows that µ is

the mean and Σ the covariance. If Σ = diag
(
σ2
1 . . . σ

2
d

)
, (1) is a product distribution of univariate N (µi, σ

2
i ). The

standard Gaussian is the special case with µ = 0d and Σ = Id×d. The following statements about a random
variable X ∈ Rd are equivalent (Lemma I.16):

1. X ∼ N (µ,Σ). That is, the probability of X = x is N (µ,Σ)(x) defined in (1).

2. The MGF of X is MX(t) = exp(t⊤µ+ 1
2 t

⊤Σt).

3. X = µ+Σ1/2Z where Z ∼ N (0d, Id×d).

4. a⊤X ∼ N (a⊤µ, a⊤Σa) for all nonzero a ∈ Rd.

5. The log probability of X = x is equal to − 1
2x

⊤Σ−1x+ (Σ−1µ)⊤x+ C where C ∈ R is constant in x.

If any holds, we say X ∈ Rd is normally distributed with parameters (µ,Σ). Note that 3 and 4 just reduce
general normality to simpler forms of (1) (standard and univariate). These alternative definitions are useful in
different contexts, for instance

• 2 shows that a point-mass distribution on x ∈ Rd is “normal” with parameters (x, 0d×d), since its MGF is
E[exp(t⊤X)] = exp(t⊤x).

• 3 is the popular Gaussian reparameterization trick where we view X as a perturbation of (µ,Σ).

• 4 is handy when showing that Y and Z are jointly normal (Section 3): it is sufficient to show that any scalar
projection of (Y, Z) using a nonzero vector is (univariate) normal.

• 5 “completes the square” for you. By putting the log probability of X in this form, we show that X is normal
and identify its covariance and mean by matching the second- and first-order terms.

2 Basic Properties

2.1 Shape

(1) implies that the distribution is symmetric: N (µ,Σ)(x) = N (µ,Σ)(−x). The gradient and the Hessian matrix
of N (µ,Σ) at x ∈ Rd are

(∇N (µ,Σ)) (x) = −N (µ,Σ)(x)× Σ−1(x− µ)
(
∇2N (µ,Σ)

)
(x) = −N (µ,Σ)(x)×

(
Σ−1 − Σ−1(x− µ)(x− µ)⊤Σ−1

)

where the Hessian is negative-definite at x = µ but can be indefinite at other points (Lemma I.32). The distribution
is not concave, but it is (strictly) log-concave, thus quasiconcave, with µ as the unique mode (as well as the mean).

2.2 Linear Transformation

A critical property of the Gaussian distribution is that it is closed under linear transformation. Note that defini-
tions 3 and 4 are consistent with this property. For any A ∈ Rd′×d and b ∈ Rd′ where A is full-rank with d′ ≤ d (so
that AΣA⊤ ≻ 0), X ∼ N (µ,Σ) implies (Lemma D.2):

AX + b ∼ N (Aµ+ b, AΣA⊤) (2)

3
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2.3 Log-Likelihood

The Gaussian log-likelihood with a Gaussian random mean is again a Gaussian log-likelihood with a regularization.

Pick any A ∈ Rd′×d and Ω ∈ Rd
′×d′

≻0 . For all y ∈ Rd′ (Lemma I.10),

E
X∼N (µ,Σ)

[logN (AX,Ω)(y)] = logN (Aµ,Ω)(y)− 1

2
tr
(
Ω−1AΣA⊤) (3)

2.4 Sample Mean and Covariance

Another characteristic of the Gaussian distribution is that the sample mean and covariance are independent. For
any iid X1 . . . XN ∼ Unk with mean µ ∈ Rd and covariance Σ ∈ Rd×d≻0 , unbiased estimators of the mean and
covariance are given by

sXN =
1

N

N∑

i=1

Xi
sS2
N =

1

N − 1

N∑

i=1

(Xi − sXN )(Xi − sXN )⊤

It turns out that sXN and sS2
N are independent iff Unk is normal (Geary, 1936). In fact, if Unk is normal, then

sXN ∼ N (µ, (1/N)Σ) and, independently, (N−1)sS2
N ∼ Wd(N−1,Σ) where Wd is known as the Wishart distribution

(proof).1 If d = 1 and Σ = σ2 > 0, this implies the better known form (N − 1)/σ2
sS2
N ∼ χ2(N − 1) where χ2(k) is

the chi-square distribution with k degrees of freedom.

3 Joint Distribution

We say X ∈ Rd and Y ∈ Rd′ are jointly normally distributed with parameters (µ,Σ) if the concatenation (X,Y )
follows N (µ,Σ). More explicitly,

[
X
Y

]
∼ N

(
µ =

[
µX
µY

]
,Σ =

[
ΣX ΣXY
ΣY X ΣY

])

where µX ∈ Rd, µY ∈ Rd′ , ΣX ∈ Rd×d≻0 , ΣY ∈ Rd
′×d′

≻0 , ΣXY ∈ Rd×d′ , and ΣY X = Σ⊤
XY .

2 A subtle fact is that X and
Y can be individual normal but not jointly normal (Appendix J), so we must explicitly establish joint normality
even for normal variables (e.g., by using 4 or 5). If X and Y are individually normal and independent, then they
are jointly normal since we can write

[
X
Y

]
∼ N

(
µ =

[
µX
µY

]
,Σ =

[
ΣX 0d×d′

0d′×d ΣY

])

If X,Y are jointly normal, uncorrelatedness implies independence (thus they are equivalent).3 But we must show
joint normality before claiming independence from uncorrelatedness. For instance, Appendix J gives X,Y ∈ R that
are individually normal (but not jointly normal) and uncorrelated, but not independent. The following results are
useful when inferring independence from uncorrelatedness:

∀A ∈ Rn×d, B ∈ Rm×d : AΣB⊤ = 0n×m ⇔ AX ∈ Rn and BX ∈ Rm are independent (4)

∀A,B ∈ Rd×d : AΣB = 0d×d ⇔ X⊤AX ∈ R and X⊤BX ∈ R are independent (5)

where X ∼ N (µ,Σ). Despite their striking similarity, the linear form (4) is simple to prove (Lemma I.11) but the
quadratic form (5), known as Craig’s theorem (Craig, 1943), is surprisingly difficult and has a long and complicated
history (Driscoll and Gundberg Jr, 1986).

1Specifically, Wd(k,Σ) is the distribution over (u1 . . . uk)
⊤(u1 . . . uk) ∈ Rd×d where u1 . . . uk ∈ Rd are iid samples from N (0d,Σ).

2We must have ΣX ,ΣY ≻ 0 since they are main-diagonal blocks of Σ ≻ 0 (Lemma I.9) and ΣXY = Σ⊤
Y X since Σ is symmetric.

3This follows from the form of the conditional distribution (8):

ΣXY = 0d×d′ ⇒ N (µ,Σ)(y|x) = N (µY +ΣY XΣ−1
X (x− µX),ΣY − ΣY XΣ−1

X ΣXY )(y) = N (µY ,ΣY )(y)

4
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3.1 Linear Combinations

Let A ∈ Rp×d, B ∈ Rp×d′ , and b ∈ Rp where A,B are full-rank with p ≤ min(d, d′). If X ∈ Rd and Y ∈ Rd′ are
jointly normal with parameters (µ,Σ), we have from (2) that

AX +BY + b ∼ N (AµX +BµY + b, AΣXA
⊤ +AΣXYB

⊤ +BΣY XA
⊤ +BΣYB

⊤) (6)

In particular, if X and Y are independently normal, then their sum is distributed as

X + Y ∼ N (µX + µY ,ΣX +ΣY ) (7)

Note that we need joint normality to guarantee the normality of a linear combination. In general a linear combi-
nation of normal variables may not be normal (e.g., (120)).

3.2 Chain Rule

If X ∈ Rd and Y ∈ Rd′ are jointly normal with parameters (µ,Σ), and if ΣY − ΣY XΣ−1
X ΣXY is invertible, then

X ∼ N (µX ,ΣX) and (Lemma I.12)

Y |X = x ∼ N (µY +ΣY XΣ−1
X (x− µX),ΣY − ΣY XΣ−1

X ΣXY ) (8)

(8) can be expressed more simply in terms of the blocks of the precision matrix Λ = Σ−1. In this case (Lemma I.13),

Y |X = x ∼ N
(
µY − Λ−1

Y ΛY X(x− µX), Λ−1
Y

)
(9)

3.3 Bayes’ Rule

IfX ∼ N (µ,ΣX) (“Gaussian prior”) and Y |X = x ∼ N (Ax+b,ΣY ) (“linear-Gaussian likelihood”) where A ∈ Rd′×d
and b ∈ Rd′ , then

[
X
Y

]
∼ N

([
µ

Aµ+ b

]
,

[
ΣX ΣXA

⊤

AΣX ΣY +AΣXA
⊤

])

along with the marginal and posterior distributions

Y ∼ N (Aµ+ b,ΣY +AΣXA
⊤) (10)

X|Y = y ∼ N (Λ−1
X (Σ−1

X µ+A⊤Σ−1
Y (y − b)), Λ−1

X ) (11)

where ΛX = Σ−1
X + A⊤Σ−1

Y A (Lemma I.14). In particular, the Gaussian prior is conjugate for the linear-Gaussian
likelihood.

4 Entropy

Let µ′ ∈ Rd and Σ′ ∈ Rd×d≻0 be parameters of an additional Gaussian distribution over Rd. Then the cross entropy
between N (µ′,Σ′) and N (µ,Σ) is (Lemma I.6):

H(N (µ′,Σ′),N (µ,Σ)) =
1

2
(µ′ − µ)⊤Σ−1(µ′ − µ) +

1

2
tr
(
Σ−1Σ′)+ 1

2
log((2π)d det(Σ)) (12)

This is sufficient to derive entropy and KL divergence:

H(N (µ,Σ)) =
1

2
log
(
(2πe)d det(Σ)

)
(13)

KL(N (µ′,Σ′),N (µ,Σ)) =
1

2
(µ′ − µ)⊤Σ−1(µ′ − µ) +

1

2
tr
(
Σ−1Σ′ − Id×d

)
+

1

2
log

(
det(Σ)

det(Σ′)

)
(14)

Notably, N (µ,Σ) has the largest entropy among all distributions over Rd with mean µ and covariance Σ (Theo-
rem C.1). This is mainly because it standardizes x inside the exponential function.
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4.1 Mutual Information

Let X ∈ Rd and Y ∈ Rd′ be jointly normal with parameters (µ,Σ). If ΣY − ΣY XΣ−1
X ΣXY is invertible, then

conditional entropy and mutual information are (Lemma I.15):

H(Y |X = x) =
1

2
log
(
(2πe)d

′
det(ΣY − ΣY XΣ−1

X ΣXY )
)

(15)

I(X,Y ) =
1

2
log

(
det(ΣX) det(ΣY )

det(Σ)

)
(16)

where x ∈ Rd is arbitrary (so H(Y |X) = H(Y |X = x)). Note that I(X,Y ) is infinite if Y = X. By the noisy-
channel coding theorem, mutual information is the capacity (highest information rate that can be achieved nearly
error-free) of a communication channel between X and Y . Below we give some well-known models with controllable
mutual information.

4.1.1 Additive white Gaussian noise channel

Let X ∼ N (0, σ2) and Z ∼ N (0, ν2) independently, and define Y = X + Z. From (7), we have Y ∼ N (0, σ2 + ν2).
We can further show that X,Y are jointly normal. The simplest approach is to observe

[
X
Y

]
=

[
1 0
1 1

] [
X
Z

]
∼ N

([
0
0

]
,

[
σ2 σ2

σ2 σ2 + ν2

])

using (2).4 Thus

I(X,Y ) =
1

2
log

(
1 +

σ2

ν2

)
(17)

where σ2

ν2 > 0 is called the signal-to-noise ratio (SNR). Since log(1 + z) ≈ z for z → 0+ and log(1 + z) ≈ log z
for z → ∞, (17) shows that I(X,Y ) grows linearly in SNR in the low-SNR regime, but logarithmically in SNR in
the high-SNR regime. This is one of the classical illustrations of “diminishing returns” of SNR in communication
(Appendix G).

4.1.2 Correlated standard normal channel

Let X,Y ∈ R be jointly standard normal with correlation ρ < 1. One way to construct them is to let X,Z
iid∼ N (0, 1)

and set Y = ρX +
√
1− ρ2Z. Then

[
X
Y

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
⇒ I(X,Y ) = −1

2
log
(
1− ρ2

)

By taking the correlation ρ→ 1 we can arbitrarily increase I(X,Y ).

5 Central Limit Theorem

Let Unk(µ, σ2) denote an unknown distribution over R with mean µ and variance σ2 > 0. It is often of interest to
consider the sample average sXN defined as

X1 . . . XN
iid∼ Unk(µ, σ2) sXN :=

1

N

N∑

i=1

Xi

The average is itself random: every time we draw N iid samples from Unk(µ, σ2), we draw a single sample of sXN .

We can easily verify that E[ sXN ] = µ and Var
(

sXN

)
= σ2

N , which states that sXN concentrates around µ as N → ∞
(this is called the “law of large numbers”). But what is the distribution of sXN? The central limit theorem
(CLT) states that sXN is asymptotically normal. More precisely, as N → ∞ we have

√
N
(

sXN − µ
) approx.∼ N (0, σ2) (18)

4Alternatively, we can use definition 4 and observe that a1X + a2Y = (a1 + a2)X + a2Z is distributed as N (0, (a1 + a2)2σ2 + a22ν
2)

for all nonzero a = (a1, a2).

6
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or, using the closure under linear transformation,

sXN
approx.∼ N

(
µ,
σ2

N

)
(19)

which is consistent with but not implied by the law of large numbers. CLT allows us to make probabilistic statements
about sample averages regardless of the underlying distribution. For instance, if X1 . . . XN are arbitrary iid samples
with mean 42 and variance 7, then approximately sXN ∼ N (42, 7

N ) so that we can calculate quantities like Pr( sXN ≤
50) (e.g., by consulting a standard normal table).

A proof of CLT shows that the KL divergence between the distribution of
√
N
(

sXN − µ
)
and N (0, σ2) goes to zero

as N → ∞. It is nontrivial: we refer to Marsh (2013) for details. CLT generalizes naturally to multivariate. If
Unk(µ,Σ) is an unknown distribution over Rd with mean µ and covariance Σ ≻ 0, then the average sXN of samples

X1 . . . XN
iid∼ Unk(µ,Σ) satisfies as N → ∞:

√
N
(

sXN − µ
) approx.∼ N (0d,Σ) (20)

sXN
approx.∼ N

(
µ,

1

N
Σ

)
(21)

6 Exponential Family

An exponential family is any set of distributions over Rd that can be expressed as

qh,τ,θ(x) = h(x)︸︷︷︸
base measure (> 0)

exp


 θ⊤︸︷︷︸

natural parameter (Rm)

τ(x)︸︷︷︸
sufficient statistic (Rm)

− Ah,τ (θ)︸ ︷︷ ︸
log-partition function


 (22)

where the log-partition function has the important property of generating cumulants of the sufficient statistic when
differentiated (e.g., ∇Ah,τ (θ) is the mean of τ(x) where x ∼ qh,τ,θ). The set of Gaussian distributions is an
exponential family (Appendix E), with one parameterization (Lemma I.23)

N (µ,Σ)(x) =
1

(
√
2π)d︸ ︷︷ ︸

base measure

exp




[
Σ−1µ

− 1
2vec

(
Σ−1

)
]⊤

︸ ︷︷ ︸
natural parameter (Rd(d+1))

[
x

vec
(
xx⊤

)
]

︸ ︷︷ ︸
sufficient statistic (Rd(d+1))

− 1

2

(
µ⊤Σ−1µ+ log (det(Σ))

)
︸ ︷︷ ︸

log-partition function




(23)

where vec(A) ∈ Rd2 vectorizes matrix A ∈ Rd×d. Thus it inherits the usual properties of an exponential family
such as the concavity of the likelihood function and the availability of conjugate priors.

6.1 Exponential Tilting

Any “base” distribution p(x) can be used as the (normalized) base measure in (22) and, using the identity sufficient

statistic τ(x) = x, generates a new exponential family as gt(x) ∝ et
⊤xp(x) indexed by natural parameter t ∈ Rd.

This technique is called exponential tilting. A useful fact is that the Gaussian distributions are closed under
exponential tilting (Lemma I.26):

Pr(Xt = x) ∝ et
⊤x ×N (µ,Σ)(x) ⇒ Xt ∼ N (µ+Σt,Σ) (24)

6.1.1 Aside: Tweedie’s formula

(24) can be used to derive a score-based Bayesian estimator called Tweedie’s formula, which is a point estimator
implied from the following posterior for µ ∼ g and x|µ ∼ N (µ,Σ) (Lemma E.2)

µ|x ∼ Unk( x+Σ∇l(x)︸ ︷︷ ︸
Tweedie’s formula

, Σ(Id×d +∇2l(x)Σ))
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where l(x) = logm(x) is the log-marginal. It is typically motivated as correcting for “selection bias” (Efron, 2011).
Suppose we observe N samples xi ∼ N (µi, σ

2) where the mean itself is drawn from some unknown prior µi ∼ g
every time. Consider the problem of estimating the mean of xmax = maxNi=1 xi. Maximum-likelihood estimation
µ̂MLE = xmax almost certainly overestimates the true mean for large N . Instead, we can consider the bias-corrected
estimator µ̂ = xmax + σ2 ∂

∂x (logm(x))|x=xmax
where m(x) =

∫
µ∈R g(µ)N (µ, σ2)(x)dµ is the marginal distribution.

Intuitively, we will have ∂
∂x (logm(x))|x=xmax

< 0 because xmax is too large given the knowledge of a shared prior.

7 Sub-Gaussian Distributions

A random scalar S ∈ R with E[S] = 0 is sub-Gaussian with variance factor σ2, denoted by S ∼ G(σ2), if

ψS(t) ≤ ψZ∼N (0,σ2)(t) =
σ2t2

2
(25)

for all t ∈ R. It is stable in the following sense:

1. Var (S) ≤ σ2 (Lemma I.29).

2. −S ∼ G(σ2). This can be seen by noting that ψ−S(t) = ψS(−t).

3. Pr(S ≥ ϵ) ≤ exp(− ϵ2

2σ2 ) for all ϵ ≥ 0. Use Chernoff’s inequality (I.19) with Lemma I.30 and (92).

4. If S1 . . . SN are independent with Si ∼ G(σ2
i ), then

∑N
i=1 Si ∼ G(∑N

i=1 σ
2
i ).

Combining these properties, we have (Lemma I.31)

Si ∼ G(σ2
i ) independently ⇒ Pr

(∣∣∣∣∣
1

N

N∑

i=1

Si

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp


− N2ϵ2

2
(∑N

i=1 σ
2
i

)


 (26)

An important class of sub-Gaussian variables is bounded scalars: ifX ∈ [a, b] thenX−E[X] ∼ G( (b−a)
2

4 ) (Hoeffding’s
lemma, I.27). This yields the following popular tail inequality.

Corollary 7.1 (Hoeffding’s inequality). If X1 . . . XN ∈ [a, b] are iid with mean µ = E[Xi] ∈ R,

Pr

(∣∣∣∣∣
1

N

N∑

i=1

Xi − µ

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
− 2Nϵ2

(b− a)2

)
(27)

Proof. By Hoeffding’s lemma, Xi − µ ∼ G( (b−a)
2

4 ). We get the statement by plugging σ2
i = (b−a)2

4 in (26).

8 Cumulative Distribution Function
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π
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The cumulative distribution function (CDF) Φ : (−∞,∞) → (0, 1)
of the standard normal distribution is5

Φ(a) := Pr(X ≤ a) =

∫ a

−∞
N (0, 1)(x)dx

where Φ(0) = 1
2 (by symmetry) and Φ′(a) = N (0, 1)(a) (by the

fundamental theorem of calculus). One use of Φ is approximating
σ(a) := (1 + e−a)−1. We find λ so that the slope of Φ(λa) is the
same as that of σ(a) at 0. This yields (Lemma I.33)

Φ

(√
π

8
a

)
≈ σ(a) (28)

5For any distribution f over X ∈ Rd the associated CDF is F (a) := Pr(X1 ≤ a1 ∧ · · · ∧Xd ≤ ad). We focus on the one-dimensional
standard normal because it is the most useful.
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Figure 1: (Left) Ten draws of (31) under the RBF kernel where x ∈ R1000 is uniformly spaced points in [−5, 5]
(representing X = R). (Right) Ten draws of (32) where x ∈ R10 is random points, f ∈ R10 is their scores sampled
from (31), and xtest ∈ R1000 is again uniformly spaced points.

The quality of the approximation is visually apparent in the figure. Another useful property of Φ is that it is closed
under a Gaussian expectation. For any λ, β ∈ R (Lemma I.34):

E
X∼N (µ,σ2)

[Φ (λX + β)] = Φ

(
λµ+ β√
1 + λ2σ2

)
(29)

(28) and (29) can be used together to derive an approximate closure of sigmoid under a Gaussian expectation:

E
X∼N (µ,σ2)

[σ (X)] ≈ σ

((
1 +

πσ2

8

)−1/2

µ

)
(30)

9 Gaussian Processes

A Gaussian process (GP) is a generalization of joint normality to infinitely many random variables. It assumes

a kernel k : X × X → R. For concreteness, we will use the RBF kernel k(u, v) = exp(− 1
2σ2 ||u− v||2) over X = Rd

with the bandwidth hyperparameter σ > 0. Given a set of N inputs x ∈ XN (no duplicates), a GP defines a
conditional distribution over their “scores” f ∈ RN by

f ∼ N (0N , k(x)) (31)

where k(x) ∈ RN×N
≻0 denotes the Gram matrix. By defining a marginal distribution over the scores of any finite

subset of X , a GP implicitly defines a distribution over functions f : X → R (imagine taking N → ∞). The
choice of the kernel dictates the function class. Under the RBF kernel, Var (fi) = 1 (since k(u, u) = 1). Thus
cor (fi, fj) = 1 for infinitesimally close xi and xj , with the degenerate marginal distribution

[
fi
fj

]
∼ N

([
0
0

]
,

[
1 1
1 1

])

which assigns all the probability mass uniformly on (fi, fj) ∈ R2 satisfying fi = fj . (On the other hand, fi and fj
are independent for infinitely far away xi and xj .) Hence the sampled functions are smooth. See the left plot in
Figure 1 for an illustration.

9.1 The Predictive Model

Let x ∈ NN and xtest ∈ XM denote training and test inputs. We introduce the latents f ∈ RN and ftest ∈ RM
distributed as a GP on (x, xtest) ∈ XN+M :

pFFtest
(f, ftest) = N

(
0N+M ,

[
k(x) k(x, xtest)

k(xtest, x) k(xtest)

])[
f
ftest

]

(we will always omit the implicit conditioning on the inputs). We can easily compute the relations between the
latents because of joint normality, for instance by (8):

pFtest|F (ftest|f) = N
(
k(xtest, x)k(x)

−1f, k(xtest)− k(xtest, x)k(x)
−1k(x, xtest)

)
(ftest) (32)
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Note that if xtest = x, then (32) reduces to N (f, 0N×N ). See the right plot in Figure 1 for an illustration. Let
r ∈ RN denote the training labels where R denote the label space, and let pR|F (·|f) be the likelihood over the
training labels given their scores. For example, we may define

pR|F (r|f) =
{
N (f,Σ)(r) for regression (R = R)∏N
i=1 σ((2ri − 1)fi) for binary classification (R = {0, 1}) (33)

More specifically, the regression labels are a Gaussian perturbation of the training scores: r = f + ϵ where ϵ ∼
N (0N ,Σ); the classification labels are sampled as r ∼ Ber(σ(f)) where σ : R → (0, 1) is the sigmoid function. The
predictive model under a GP is

pFFtestR(f, ftest, r) = pFFtest
(f, ftest)× pR|F (r|f)

The (very Bayesian) goal is to estimate the “predictive posterior” pFtest|R(·|r). Under the model, it is given by

pFtest|R(ftest|r) =
∫

f∈RN

pF |R(f |r)× pFtest|F (ftest|f) df (34)

Since pFtest|F (·|f) is Gaussian and known (32), if we also have a Gaussian form of the posterior pF |R(·|r) = N (µp,Σp)
where µp ∈ Rm and Σp ∈ Rm×m are functions of the training data, then (34) is given by Bayes’ rule (10) as
pFtest|R(·|r) = N (µpp,Σpp) where

µpp = k(xtest, x)k(x)
−1µp (35)

Σpp = k(xtest)− k(xtest, x)(k(x)
−1 − k(x)−1Σpk(x)−1)k(x, xtest) (36)

We may then infer the test labels in a task-specific manner. In regression, we may simply return the mean µpp ∈ RM
(35). In classification, we compute the expected probabilities for each of the test points j = 1 . . .M

Pr (j-th test point has label 1) = E
ftest,j∼N (µpp

j ,Σpp
j,j)

[σ(ftest,j)] ≈ σ



(
1 +

πΣpp
j,j

8

)−1/2

µpp
j


 (37)

(the approximation uses (30)), whereby we return label 1 if (37) is greater than 1
2 and 0 otherwise. Since µp and Σp

completely determine the solution, we only need to specify the Gaussian posterior (or a Gaussian approximation of
the posterior) to make predictions.

9.1.1 The regression posterior

In regression, the prior pF (·) = N (0N , k(x)) and the likelihood pR|F (·|f) = N (f,Σ) are both Gaussians. Thus
the marginal is Gaussian pR(·) = N (0N , k(x) + Σ) by (10). The marginal log-likelihood (MLL) log pR(r) may be
used for tuning kernel hyperparameters. The posterior is also Gaussian pF |R(·|r) = N (µp,Σp) with the mean and
covariance specified by (11):

µp = (k(x)−1 +Σ−1)−1Σ−1r ⇔ µp = k(x)(k(x) + Σ)−1r (38)

Σp = (k(x)−1 +Σ−1)−1 Σp = k(x)− k(x)(Σ + k(x))−1k(x) (39)

where the alternative forms are given by the Welling identity (65) and the Woodbury identity (67). Plugging these
in (35) and (36), we have the predictive posterior

pFtest|R(ftest|r) = N
(
k(xtest, x)(k(x) + Σ)−1r, k(xtest)− k(xtest, x)(k(x) + Σ)−1k(x, xtest)

)
(ftest) (40)

which generalizes Bayesian linear regression (108) and reduces to (32) in the “noiseless” setting (i.e., Σ = 0N×N ).
Another way to derive (40) is to apply the Gaussian chain rule (8) on the following observation:

[
r
ftest

]
∼ N

(
0N+M ,

[
k(x) + Σ k(x, xtest)
k(xtest, x) k(xtest)

])
(41)
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Figure 2: The ground-truth label probabilities are shown in blue lines. Training labels (+ = 1, − = 0) are
generated according to these probabilities on random points. The expected probabilities (37) computed from the
labeled points using (42) and (43) are shown in red lines, with the corresponding decision rules shown in green.
The left plot uses the ground-truth bandwidth (σ = 0.6) and fails to fit the training data. The right plot uses a
small bandwidth (σ = 0.1) to achieve 100% training accuracy.

9.1.2 The classification posterior

In classification, the likelihood pR|F (r|f) =
∏N
i=1 σ((2ri − 1)fi) is not Gaussian, so the posterior is not Gaussian.

But we can still calculate a Gaussian approximation pF |R(·|r) ≈ N (µp,Σp). One based on Laplace approximation
is given by (Lemma I.35)

µp = f⋆ ⇔ µp = k(x)(r − σ(f⋆))

Σp = (k(x)−1 +W ⋆)−1 Σp = k(x)− k(x)
(
(W ⋆)

−1
+ k(x)

)−1

k(x)

where f⋆ ∈ RN is the unique maximizer of the strictly concave log pFR(f, r) (hence can be recovered easily by
numerical optimization, e.g., Newton’s method) satisfying the stationary condition f⋆ = k(x)(r − σ(f⋆)), and
W ⋆ = diag (σ(f⋆)⊙ (1− σ(f⋆))). The alternative form of Σp is given by the Woodbury identity (67). Plugging
these in (35) and (36), we have the Gaussian approximate predictive posterior pFtest|R(·|r) ≈ N (µpp,Σpp) with

µpp = k(xtest, x)(r − σ(f⋆)) (42)

Σpp = k(xtest)− k(xtest, x)(k(x) + (W ⋆)
−1

)−1k(x, xtest) (43)

which can be used to calculate the expected probabilities (37) for classifying the test points. See Figure 2 for an
illustration.

9.2 Sparse GPs

Standard GPs need to invert the N ×N Gram matrix k(x) which is O(N3). A mainstream approach to avoiding
this computational difficulty is sparse GPs, which introduce additional unlabeled inputs xm ∈ Xm where m≪ N
(e.g., by k-means on x). Now we have three latents, (fm, f, ftest) ∈ Rm+N+M distributed as a GP on (xm, x, xtest) ∈
Xm+N+M . We can again easily compute the relations between any two latents because of joint normality, in
particular

pFtest|Fm
(ftest|fm) = N

(
k(xtest, xm)k(xm)−1fm, k(xtest)− k(xtest, xm)k(xm)−1k(xm, xtest)

)
(ftest) (44)

pF |Fm
(f |fm) = N

(
k(x, xm)k(xm)−1fm, k(x)− k(x, xm)k(xm)−1k(xm, x)

)
(f) (45)

Note that they only require inverting the m × m Gram matrix k(xm). Letting pR|F (·|f) denote the training
likelihood, the predictive model under a sparse GP is

pFmFFtestR(fm, f, ftest, r) = pFFtest
(fm, f, ftest)× pR|F (r|f)

The difference between a standard GP and a sparse GP is illustrated below:
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Again, the goal is to estimate the predictive posterior pFtest|R(·|r). In this case, it can be written as

pFtest|R(ftest|r) =
∫

fm∈Rm

pFm|R(fm|r)× pFtest|Fm
(ftest|fm) df (46)

Since pFtest|Fm
(·|f) is Gaussian and known (44), if we also have a Gaussian form of the sparse posterior pFm|R(·|r) =

N (νp,Ωp) where νp ∈ Rm and Ωp ∈ Rm×m are functions of the training data, then (46) is again given by Bayes’
rule (10) as pFtest|R(·|r) = N (νpp,Ωpp) where

νpp = k(xtest, xm)k(xm)−1νp (47)

Ωpp = k(xtest)− k(xtest, xm)(k(xm)−1 − k(xm)−1Ωpk(xm)−1)k(xm, xtest) (48)

Critically, computing (47) and (48) can be done in O(Mm2 +m3). We may then infer the test labels similarly as
before. Since νp and Ωp completely determine the solution, we only need to specify the Gaussian sparse posterior
(or a Gaussian approximation of the sparse posterior) to make predictions.

9.2.1 Variational posterior approximation

We take a variational approach to recovering the sparse posterior pFm|R(·|r). The full posterior factorizes as
pFmF |R(fm, f |r) = pFm|R(fm|r)× pF |Fm

(f |fm) where the latter term is fully known (45). We can match the form
of the approximate posterior by defining qFmF |R(fm, f |r) = qFm|R(fm|r) × pF |Fm

(f |fm) so that we only need to
optimize over qFm|R. The evidence lower bound (ELBO) on the MLL log pR(r) becomes

log pR(r) ≥ E
fm∼qFm|R(·|r)

f |fm∼pF |Fm (·|fm)

[
log pR|F (r|f)

]
−KL(qFm|R(·|r), pFm

) (49)

By the usual property of the ELBO, a distribution qFm|R(·|r) that maximizes the bound satisfies qFm|R(·|r) =
pFm|R(·|r) and makes the inequality tight.

9.2.2 The regression sparse posterior

When the likelihood is Gaussian pR|F (·|f) = N (f,Σ), we have a closed-form solution of the true (Gaussian) sparse
posterior and the corresponding MLL (Lemma I.36):

pFm|R(fm|r) = N
(
Λ(xm)−1k(xm)−1k(xm, x)Σ

−1r,Λ(xm)−1
)
(fm) (50)

log pR(r) = logN (0N ,Σ+Q(xm))(r)− 1

2
tr
(
Σ−1 (k(x)−Q(xm))

)
(51)

where Λ(xm) = k(xm)−1 + k(xm)−1k(xm, x)Σ
−1k(x, xm)k(xm)−1 and Q(xm) = k(x, xm)k(xm)−1k(xm, x). Note

that if xm = x, then Λ(xm) = k(x)−1 +Σ−1 and Q(xm) = k(x) so that (50) and (51) reduce to

pFm|R(fm|r) = N
(
(k(x)−1 +Σ−1)−1Σ−1r, (k(x)−1 +Σ−1)−1

)
(fm)

log pR(r) = logN (0N , k(x) + Σ)(r)

which coincide with the posterior and the MLL in a standard GP for regression (Section 9.1.1). A notable feature
of this result is that we can learn xm (aka. “inducing points”) and any kernel hyperparameters by maximizing the
MLL (51) (Titsias, 2009). The MLL can be computed in O(Nm2 +m3) assuming a simple noise distribution (e.g.,
Σ = σ2IN×N ); see this note for details on how to invert the covariance matrix efficiently. Once the desired variables
in (51) are optimized, we compute the mean and covariance in (50) (again in O(Nm2 +m3)) for use in (47) and
(48) to obtain pFtest|R(·|r).
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9.2.3 The classification sparse posterior

With the classification likelihood pR|F (r|f) =
∏N
i=1 σ((2ri − 1)fi), the true sparse posterior pFm|R(·|r) is no longer

Gaussian. But we can parameterize the approximate sparse posterior as Gaussian qFm|R(·|r) = N (νp,Ωp) and

directly optimize the ELBO over νp ∈ Rm and Ωp ∈ Rm×m. (In practice, we reparameterize Ωp = LL⊤ where L
is a lower triangular matrix to enforce Ωp ≻ 0 during optimization.) A few steps are needed to make this efficient
(Hensman et al., 2015). We marginalize out fm in (fm, f) ∼ qFm|R(·|r)× pF |Fm

(·|fm) by Bayes’ rule:

qF |R(f |r) = N
(
k(x, xm)k(xm)−1νp, k(x) + k(x, xm)k(xm)−1 (Ωp − k(xm)) k(xm)−1k(xm, x)

)
(f)

Note that qF |R(f |r) =
∏N
i=1 qFi|R(fi|r) where

qFi|R(a|r) = N
(
k(xi, xm)k(xm)−1νp, k(xi) + k(xi, xm)k(xm)−1 (Ωp − k(xm)) k(xm)−1k(xm, xi)

)
(a)

can be computed in O(m3) individually. The ELBO (49) becomes

log pR(r) ≥
N∑

i=1

(∫

a∈R
qFi|R(a|r)× logσ((2ri − 1)a) da

)
−KL(N (νp,Ωp),N (0m, k(xm))) (52)

The Gaussian KL term is computed in O(m3) by (14). The one-dimensional integral of the log-likelihood can be
estimated in O(m3) by Gaussian quadrature methods. The formulation (52) thus allows for scalable distributed
optimization of νp and Ωp. Once they are optimized, we can compute the predictive posterior pFtest|R and classify
the test points by (37).

10 TODO: High-Dimensional Behavior
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A Integration

A.1 Single-Variable

An antiderivative of f : R → R is a function F : R → R such that F ′ = f . If F is an antiderivative, then so is
F + C for any constant C ∈ R. For instance, (1/3)x3 + 42 is an antiderivative of x2.

The (definite) integral of f : R → R over [a, b] is a scalar
∫ b
a
f(x)dx ∈ R that represents the signed area of f on

[a, b]. The quantity f(x)dx is interpreted as the product of the function value and an infinitesimally small interval.
There are different ways to formalize the area. The most common definition is the Riemann integral which partitions
[a, b] into intervals [iδ, (i+ 1)δ] of width δ > 0 and define

∫ b

a

f(x)dx := lim
δ→0

∑

i

f(xδi )δ (53)

where xδi ∈ [iδ, (i+1)δ]. The finite sum
∑
i f(x

δ
i )δ for a given width δ is called a Riemann sum. Thus an integral

is simply the limiting value of a Riemann sum (if it exists it is unique). A more general definition is a Lebesque
integral which partitions the range of f .

The fundamental theorem of calculus (FTC) allows us to evaluate integrals by antiderivatives: if F is any
antiderivative of f , then

∫ b

a

f(x)dx = F (x)
∣∣b
a
:= F (b)− F (a) (54)

For instance, the signed area under x2 over [−1, 1] is 2/3. Basic properties of integration include

∫ b

a

αf(x) + βg(x)dx = α

∫ b

a

f(x)dx+ β

∫ b

a

g(x)dx (linearity) (55)

∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du (u-substitution) (56)

∫ b

a

f(x)G(x)dx = F (x)G(x)
∣∣b
a
−
∫ b

a

F (x)g(x)dx (integration by parts) (57)

(Exercise: verify (56–57) using the chain rule and the product rule in differentiation.)

A.1.1 Substitution in practice

While (56) is the standard form of u-substitution, we often use it mechanically as follows. We wish to integrate f
over the interval a < b. We view f as a (hopefully simpler) function of u = g(x) where g : R → R is invertible and
differentiable with nonzero derivative over (a, b). The infinitesimals are related as du = g′(x)dx by the chain rule,
or equivalently dx = g′(g−1(u))−1du. This yields a “plug-in” version of (56) where we substitute g(x) = u and
dx = g′(g−1(u))−1du,

∫ b

a

f(g(x))dx =

∫ g(b)

g(a)

f(u)g′(g−1(u))−1du (58)

For instance,

∫ √
π
2

0

2x cos
(
x2
)
dx =

∫ π
2

0

2
√
u cos (u)

(
1

2
√
u

)
du

=

∫ π
2

0

cos (u) du = sin (u)

∣∣∣∣
π
2

0

= 1

where 2x cos
(
x2
)
= 2

√
u cos (u) with u = g(x) = x2. Note that g is invertible on (0,

√
π
2 ) so that x =

√
u; it is also

differentiable with nonzero derivative g′(x) = 2x. Writing dx = (2
√
u)−1du, we cancel terms and are finally able to

use FTC (54).
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Orientation of region. Observe that

1 =

∫ 1

0

1dx =

∫ −1

0

(−1)du =

∫ 0

−1

(+1)du

The first equality is by FTC. The second equality is by (58) with f(x) = 1 and u = g(x) = −x. The final equality
is again by FTC, simply acknowledging that (−x)|−1

0 = x|0−1 = 1. More generally, when g′(x)−1 < 0 (i.e., u is
moving in the opposite direction of x), we also change the “orientation of region” in integration (right-to-left instead
of left-to-right). We can consider an alternative orientation-free formulation of u-substitution by always assuming
integrating left-to-right. Let R denotes a region a < b, then

∫

R

f(g(x))dx =

∫

g(R)

f(u)
∣∣g′(g−1(u))−1

∣∣ du (59)

where g(R) is the output region of g when applied to R, integrated from a smaller value to a larger value. This
formulation is useful because it generalizes to higher dimensions (61).

A.2 Multi-Variable

The integral of f : Rd → R over a region R ⊆ Rd is a scalar
∫
R
f(x)dx ∈ R that represents the signed hypervolume

of f on R. Evaluation of such an integral is generally challenging because the region may take complicated forms
(high-dimensional curves).

We can greatly simplify the problem by restricting the region to be a hypercube R = [a, b] where a, b ∈ Rd specify a
d-dimensional bounding box [a1, b1]× · · · × [ad, bd] (potentially all of Rd). A central tool in this setting is Fubini’s
thoerem, which states that

∫

[a,b]

f(x)dx =

∫ bπ(d)

aπ(d)

(
· · ·
(∫ bπ(1)

aπ(1)

f(x1 . . . xd)dxπ(1)

)
· · ·
)
dxπ(d)

where π is any permutation of {1 . . . d}. Thus we can evaluate a multi-variable integral by iteratively evaluating a
single-variable integral in any order.

Many properties of integration carry over (like linearity), but some need to be generalized. One important gener-
alization is multi-variable u-substitution. Let R ⊆ Rd and g : R → Rd such that Jg(x) ∈ Rd×d (Jacobian of g)
is nonzero for all x ∈ R. Then

∫

R

f(g(x)) |det(Jg(x))| dx =

∫

g(R)

f(u)du (60)

Similar to the single-variable case, we often use substitution mechanically as follows. We integrate f over a region R
by viewing it as a simpler function of u = g(x) where g : R→ Rd is assumed to be invertible (i.e., det(Jg(x)) ̸= 0).

The infinitesimals are related as du = |det(Jg(x))| dx or equivalently dx = |det(Jg(x))|−1
du. This gives

∫

R

f(g(x))dx =

∫

g(R)

f(u)
∣∣det(Jg(g−1(u)))

∣∣−1
du (61)

where we “plug in” g(x) = u and dx =
∣∣det(Jg(g−1(u)))

∣∣−1
du. This strictly generalizes (59).

A.2.1 Applications to probability

Let X ∈ Rd be a random vector with distribution pX supported on S ⊆ Rd (i.e., pX(x) ≥ 0 and
∫
S
pX(x)dx = 1).

The probability that X lies in a region R ⊆ S is

Pr (X ∈ R) =

∫

R

pX(x)dx

Let t : S → T be a smooth invertible function where T ⊆ Rd. Define a new random vector Y = t(X) supported on
T . We claim that Y has the distribution

pY (y) = pX(t−1(y)) |det(Jt−1(y))| ∀y ∈ T (62)

15



Equivalently,

pY (t(x)) = pX(x) |det(Jt−1(t(x)))| ∀x ∈ S (63)

Proof sketch. For any R ⊆ T ,

Pr(Y ∈ R) = Pr(X ∈ t−1(R)) =

∫

t−1(R)

pX(x)dx =

∫

R

pX(t−1(y)) |det(Jt−1(y))| dy

where the last equality applies (60) with g = t−1. This implies (62).

B Matrix Identities

Inverse of a sum. See Welling (2013) for (64) and (157) of Petersen et al. (2008) for (66).

(B⊤R−1B + P−1)−1B⊤R−1 = PB⊤(BPB⊤ +R)−1 (Welling) (64)

(R−1 + P−1)−1R−1 = P (P +R)−1 (Welling with B = I) (65)

(A+ UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1 (Woodbury) (66)

(A+B)−1 = A−1 −A−1(B−1 +A−1)−1A−1 (Woodbury with U = V = I) (67)

Block matrix inversion rule. See the Wikipedia page.

[
M1 M2

M3 M4

]−1

=

[
(M1 −M2M

−1
4 M3)

−1 −(M1 −M2M
−1
4 M3)

−1M2M
−1
4

−M−1
4 M3(M1 −M2M

−1
4 M3)

−1 M−1
4 +M−1

4 M3(M1 −M2M
−1
4 M3)

−1M2M
−1
4

]
(68)

Block matrix determinant rule. See the Wikipedia page.

det

([
M1 M2

M3 M4

])
= det(M1)× det(M4 −M3M

−1
1 M2) (69)

C Continuous Entropy and KL Divergence

We generalize results in Marsh (2013) to multivariate. The continuous/differential entropy of X ∈ Rd with density
pX supported on S ⊆ Rd is defined as6

H(X) := −
∫

S

pX(x) log pX(x)dx (70)

It is easily seen that entropy is additive for independent variables. That is, if X ∈ Rd and Y ∈ Rd′ are independent
then the entropy of Z = (X,Y ) ∈ Rd+d′ is H(Z) = H(X) +H(Y ).

• The uniform distribution u[a,b](x) :=
1
b−a over [a, b] ⊂ R has entropy

H(X) =

∫ b

a

1

b− a
log(b− a)dx = log(b− a) (71)

• The Gaussian distribution N (µ,Σ) over Rd has entropy (Corollary I.7)

H(X) =
1

2
log
(
(2πe)d det(Σ)

)

• The exponential distribution eλ(x) := λ exp(−λx) over [0,∞) with parameter λ > 0 has entropy (Lemma I.5)

H(X) = 1− log λ (72)

6We use the term “density” in this section to distingiush continuous vs discrete variables.
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Unfortunately, continuous entropy suffers from various shortcomings (reviewed in Section C.1), most notably neg-
ativity (e.g., (71) is negative if b− a < 1, (72) is negative if λ > e). On the other hand, let qX be another density
of X with support S. Define the continuous KL divergence (aka. relative entropy) between pX and qX as

KL(pX , qX) :=

∫

S

pX(x) log
pX(x)

qX(x)
dx (73)

Continuous KL divergence is nonnegative:

KL(pX , qX) = E
x∼pX

[
log

pX(x)

qX(x)

]

= E
x∼pX

[
− log

qX(x)

pX(x)

]

≥ − log

(
E

x∼pX

[
qX(x)

pX(x)

])
(convexity of − log)

= − log

(∫

S

pX(x)
qX(x)

pX(x)
dx

)

= − log

(∫

S

qX(x)dx

)
= 0

where KL(pX , qX) = 0 iff pX = qX almost everywhere. This has useful implications.

• The cross entropy between pX and qX upper bounds the entropy of pX ,

H(pX , qX) := H(pX) + KL(pX , qX) ≥ H(pX) (74)

• Mutual information is nonnegative,

I(X,Y ) := KL(pXY , pXpY ) ≥ 0 (75)

The cross entropy upper bound can be used to derive various maximum entropy densities.

Theorem C.1.

N (µ,Σ) ∈ argmax
pX : E[X]=µ, Var(X)=Σ

H(pX) (76)

u[a,b] ∈ argmax
pX : Support(pX)=[a,b]

H(pX) (77)

eλ ∈ argmax
pX : Support(pX)=Rd

≥0, E[X]=λ−1

H(pX) (78)

where u[a,b] denotes the uniform distribution over [a, b] ⊂ Rd and eλ denotes the product exponential density over

Rd≥0 with λ > 0d

Proof. (76): Let pX with mean µ ∈ Rd and covariance Σ ≻ 0. Then

H(pX ,N (µ,Σ)) =

∫

Rd

pX(x)

(
1

2
(x− µ)⊤Σ−1(x− µ) +

1

2
log((2π)d det(Σ))

)

=
1

2
E

x∼pX

[
(x− µ)⊤Σ−1(x− µ)

]
+

1

2
log((2π)d det(Σ))

=
d

2
+

1

2
log((2π)d det(Σ))

=
1

2
log((2πe)d det(Σ)) = H(N (µ,Σ)) ≥ H(pX)

(77): Assume d = 1. Given any pX with support [a, b] we have

H(pX , uX) =

∫ b

a

pX(x) log(b− a)dx = log(b− a) = H(u[a,b]) ≥ H(pX)

17



The statement holds for d > 1 since each dimension is independently optimized.

(78): Assume d = 1. Given any pX with support [0,∞) and mean λ−1 > 0 we have

H(pX , eλ) =

∫ ∞

0

pX(x)(λx− log λ)dx = λ E
x∼pX

[x]− log λ = 1− log λ = H(eλ) ≥ H(pX , eλ)

The statement holds for d > 1 since each dimension is independently optimized.

C.1 Shortcomings of Continuous Entropy

C.1.1 Inconsistency with Shannon entropy

The Shannon entropy of discrete X ∈ {x1 . . . xn} with distribution pX is

H(X) := −
n∑

i=1

pX(xi) log pX(xi) (79)

This definition was derived by Shannon as a solution that satisfies axioms of information (regarding monotonicity,
non-negativity, zero information, and independence). (70) appears to be a natural continuous extension of (79) in
the sense that both are Ex∼pX [− log pX(x)], but it fails to satisfy the axioms (e.g., it can be negative). One way to
better understand why is to show that (70) is inconsistent with (79) in the limit. Assume d = 1 and let pX be a
density supported on [a, b]. By definition

∫ b

a

pX(x)dx = lim
δ→0

∑

i

pX(xδi )δ = 1 (80)

where
∑
i pX(xδi )δ is a finite Riemann sum of width δ > 0. Thus we can cast the density pX as an increasingly

fine-grained discrete distribution with probabilities pX(xδi )δ as δ → 0. Note that each value of δ > 0 yields a discrete
distribution with a well-defined Shannon entropy. This Shannon entropy, in the limit, is

lim
δ→0

(
−
∑

i

(pX(xδi )δ) log(pX(xδi )δ)

)
= − lim

δ→0

∑

i

(pX(xδi ) log pX(xδi ))δ − lim
δ→0

∑

i

pX(xδi )δ log δ

= −
∫ b

a

pX(x) log pX(x)dx− lim
δ→0

∑

i

pX(xδi )δ log δ

= H(X)−
(
lim
δ→0

∑

i

pX(xδi )δ

)(
lim
δ→0

log δ

)
(81)

= H(X) +∞ (82)

where (81) follows from the generalized product rule of limits using (80).7 So the limiting Shannon entropy diverges
from the continuous entropy by an infinite offset.

C.1.2 Variability under change of coordinates

A good measure of information should not depend on the representation of samples from a distribution. For instance,
let pX be a distribution over finitely many circles, each of which can be specified by its radius or area. Clearly,
the Shannon entropy of the circle is the same regardless of the representation. Now let pX be a density over all
circles. The continuous entropy of the circle under the radius representation is different from that under the area
representation. A general statement that implies this result is given below.

Lemma C.2. Let X ∈ Rd with density pX supported on S. For any invertible mapping t on S,

H(t(X)) = H(X)− E
x∼pX

[log |det(Jt−1(t(x)))|]
7Assume limx→a f(x) ̸= 0. If g(x) does not oscillate around a,

lim
x→a

f(x)g(x) = lim
x→a

f(x) lim
y→a

g(y)

If g(x) oscillates around a, then so does f(x)g(x).
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Proof.

H(t(X)) = −
∫

S

pX(x) log pX(t(x))dx

= −
∫

S

pX(x) log pX(x)dx−
∫

S

pX(x) log |det(Jt−1(t(x)))| dx (by (63))

= H(X)− E
x∼pX

[log |det(Jt−1(t(x)))|]

Corollary C.3. For any invertible A ∈ Rd×d and b ∈ Rd,

H(AX + b) = H(X)− log
∣∣det(A−1)

∣∣ (83)

Corollary C.4. For α > 0,

H(αX) = H(X) + d logα

Proof.

H(αX) = H(X)− log
∣∣det(α−1Id×d)

∣∣ (by (83))

= H(X)− log
∣∣α−d∣∣

= H(X)− logα−d (since α > 0)

= H(X) + d logα

Corollary C.4 states that we can vacuously increase the continuous entropy of X ∈ Rd to infinity by multiplying
each value with a scalar α as we take α→ ∞.

D Moment-Generating Function

Let X ∈ Rd denote a random vector with distribution pX . The moment-generating function (MGF) of X is
a real-valued positive mapping MX : Rd → (0,∞) defined as

MX(t) := E
x∼pX

[
exp

(
t⊤x

)]
(84)

Not every distribution has a corresponding MGF (because (84) may diverge). But a classical result in probability
theory is that an MGF uniquely determines a probability distribution. More formally, let X,Y ∈ Rd be random
vectors with distributions pX , pY with well-defined MGFs MX ,MY . Then pX = pY iff MX = MY . Thus an MGF
is an alternative characterization of a random variable.

What makes MX special is obviously the exponential function. Since ez =
∑∞
n=0

zn

n! ,

MX(t) = 1 + t⊤ E [X]︸ ︷︷ ︸
1st moment

+
1

2
t⊤ E

[
XX⊤]

︸ ︷︷ ︸
2nd moment

t+ · · ·

so that ∇nMX(0) is the n-th moment of pX (hence the name).

Lemma D.1. Let X ∼ N (µ,Σ). Then

MX(t) = exp

(
t⊤µ+

1

2
t⊤Σt

)
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Proof. We use the same substitution in the proof of Lemma I.4. Let Σ = UΛU⊤ denote an orthonormal eigende-
composition. Let u = g(x) where g(x) = Λ−1/2U⊤(x − µ), which implies x = UΛ1/2u + µ. Thus |det(Jg(x))| =∣∣det(Λ−1/2U⊤)

∣∣ = det(Λ)−1/2, so we have the infinitesimal dx =
√

det(Λ)du. Then
∫

Rd

1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
exp(t⊤x)dx

=

∫

Rd

√
det(Λ)

(
√
2π)d

√
det(Λ)

exp

(
−1

2
u⊤u

)
exp(t⊤UΛ1/2u+ t⊤µ)du

= exp(t⊤µ)

∫

Rd

1

(
√
2π)d

exp

(
−1

2
u⊤u+ t⊤UΛ1/2u

)
du

= exp(t⊤µ)

∫

Rd

1

(
√
2π)d

exp

(
−1

2

∣∣∣
∣∣∣u− UΛ1/2t

∣∣∣
∣∣∣
2

+
1

2
t⊤Σt

)
du

= exp

(
t⊤µ+

1

2
t⊤Σt

)∫

Rd

1

(
√
2π)d

exp

(
−1

2

∣∣∣
∣∣∣u− UΛ1/2t

∣∣∣
∣∣∣
2
)
du

= exp

(
t⊤µ+

1

2
t⊤Σt

)

The first two moments of the Gaussian MGF are

h(t) := t⊤µ+
1

2
t⊤Σt

∇MX(t) = exp (h(t)) (µ+Σt) ⇒ ∇MX(0) = µ = E [X] (85)

∇2MX(t) = exp (h(t)) Σ + exp (h(t)) (µ+Σt) (µ+Σt)
⊤ ⇒ ∇2MX(0) = Σ + µµ⊤ = E

[
XX⊤] (86)

which imply that the mean and the covariance matrix of X are µ and Σ.

An interesting consequence of Lemma D.1 is that a point-mass density can be viewed as a degenerate Gaussian
distribution with zero variance. That is, if X ∈ Rd takes value a ∈ Rd with probability 1, then MX(t) = exp(a⊤t),
which is equal to the Gaussian MGF with Σ = 0d×d.

One application of MGF is showing that a linear transformation of a Gaussian random variable is also Gaussian.
Note that the MGF of a linear transformation of X is generally

MAX+b(t) = E
x∼pX

[
exp

(
t⊤Ax

)
exp

(
t⊤b
)]

= exp
(
t⊤b
)
MX(A⊤t) (87)

Lemma D.2. Let X ∼ N (µ,Σ). Let A ∈ Rd′×d and b ∈ Rd′ where d′ ≤ d and A has full rank. Then AX + b ∼
N (Aµ+ b, AΣA⊤).

Proof. For any t ∈ Rd′ ,

MAX+b(t) = exp
(
t⊤b
)
MX(A⊤t) (by (87))

= exp
(
t⊤b
)
exp

(
t⊤Aµ+

1

2
t⊤AΣA⊤t

)
(by Lemma D.1)

= exp

(
t⊤(Aµ+ b) +

1

2
t⊤AΣA⊤t

)

The last term is the MGF of a random variable with distribution N (Aµ + b, AΣA⊤) where AΣA⊤ ≻ 0. The
statement follows from the one-to-one correspondence between MGFs and distributions.

D.1 Cumulant-Generating Function

The log MGF ψX(t) := logE[et
⊤X ] is called the cumulant-generating function (CGF) of X. We see that it is

the (convex) log-partition function of t-tilted Xt distributed as (Appendix E)

pXt(x) =
et

⊤xpX(x)

E[et⊤X ]
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We call ∇(n)ψX(t) the n-th cumulant of X. From (95–96), we have

∇ψX(t) = E[Xt] (88)

∇2ψX(t) = Cov(Xt) (89)

In particular,

∇ψX(0d) = E[X] (90)

∇2ψX(0d) = Cov(X) (91)

This fact is used in Hoeffding’s lemma which bounds the CGF of a bounded scalar random variable by using Taylor’s
approximation of the CGF around 0 and then bounding the mean/variance of that variable (Lemma I.27).

Gaussian cumulants. The CGF of X ∼ N (µ,Σ) is ψX(t) = µ⊤t+ 1
2 t

⊤Σt, so

∇ψX(t) = µ+Σt

∇2ψX(t) = Σ

which is consistent with the fact that Xt ∼ N (µ + Σt,Σ) (Lemma I.26). The corresponding Legendre transform
ψ∗
X(t) := supλ∈Rd λ⊤t− ψX(λ) of ψX is (Lemma I.28)

ψ∗
X(t) =

1

2
(t− µ)⊤Σ−1(t− µ) (92)

E Exponential Family

E.1 Exponential Tilting

Given any “base” distribution p over Rd, we can generate a set of distributions qp,τ,θ by

qp,τ,θ(x) :=
eθ

⊤τ(x)p(x)

Ex′∼p[eθ
⊤τ(x′)]

(93)

for any τ : Rd → Rm and θ ∈ Rm such that Ex′∼p[e
θ⊤τ(x′)] exists. Note that

• qp,τ,θ is nonnegative and sums/integrates to 1.

• qp,τ,θ has the same support as p.

• qp,τ,θ assigns a weight eθ
⊤τ(x) on the probability of x, changing the tails of p.

• qp,τ,0m = p.

This technique is called exponential tilting of p. We can rewrite (93) as

qp,τ,θ(x) = p(x) exp
(
θ⊤τ(x)−Bp,τ (θ)

)
(94)

where the log-partition function Bp,τ (θ) := logEx∼p[e
θ⊤τ(x)] normalizes qp,τ,θ. We note several properties:

• Bp,τ (θ) is convex (Lemma I.21).

• τ is a sufficient statistic for θ (Theorem I.20).

• Differentiating Bp,τ (θ) generates the cumulants of τ(x) over x ∼ qp,τ,θ, for instance (Lemma I.22)

∇Bp,τ (θ) = E
x∼qp,τ,θ

[τ(x)] (95)

∇2Bp,τ (θ) = Cov
x∼qp,τ,θ

(τ(x)) (96)

In particular, ∇Bp,τ (0m) = Ex∼p[τ(x)] and ∇2Bp,τ (0m) = Covx∼p(τ(x)).

• Aside: (96) implies that Bp,τ (θ) is convex since ∇2Bp,τ (θ) ⪰ 0.

Exponential tilting often preserves the distribution family. For instance, if X ∼ N (µ,Σ) and Xt is the t-tilted X
with t ∈ Rd (τ(x) = x), then Xt ∼ N (µ+Σt,Σ) (Lemma I.26).
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E.2 Unnormalized Form

More generally, we may consider any nonnegative function h : Rd → (0,∞) (“base measure”) and define

qh,τ,θ(x) =
exp

(
θ⊤τ(x)

)
h(x)∫

x∈Rd exp (θ⊤τ(x))h(x)dx
(97)

for any τ : Rd → Rm and θ ∈ Rm such that
∫
x∈Rd exp

(
θ⊤τ(x)

)
h(x)dx exists. We can rewrite (97) as

qh,τ,θ(x) = h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
(98)

where Ah,τ (θ) := log
(∫
x∈Rd h(x) exp

(
θ⊤τ(x)

)
dx
)
and τ is again a sufficient statistic for θ. Clearly, exponential

tilting is a special case where the base measure is normalized. However, (97) is strictly more general since it allows
for h such that

∫
x
h(x)dx diverges. It is easy to check that the previous properties hold without a normalized base

measure, specifically:

• Differentiating Ah,τ (θ) generates the cumulants of τ(x) over x ∼ qh,τ,θ, in particular

∇Ah,τ (θ) = E
x∼qh,τ,θ

[τ(x)] (99)

∇2Ah,τ (θ) = Cov
x∼qh,τ,θ

(τ(x)) (100)

• (100) implies that Ah,τ (θ) is convex.

A set of distributions that can be expressed in the form (98) is called an exponential family. θ ∈ Rm is called
its natural parameter. Note that there are many exponential families. For instance, the set of all normal
distributions is one exponential family. The set of all categorical distributions is another exponential family.

E.2.1 Discussions

CGF. The CGF ψτ(X)(t) = logE[et
⊤τ(X)] of τ(x) takes the form (Lemma I.24):

ψτ(X)(t) = Ah,τ (θ + t)−Ah,τ (θ) (101)

where we see ∇(n)ψτ(X)(0m) = ∇(n)Ah,τ (θ); this is consistent with the fact that in an exponential family, the
log-partition function generates cumulants.

Conjugate prior. In Bayesian probability theory, a prior over the parameter of a distribution is called a con-
jugate prior if the implied posterior over the parameter conditioning on a sample from the distribution is in the
same distribution family that the prior is in. For an exponential family, we can define a prior

πh,τ (θ;α, β) =
1

Zh,τ (α, β)
exp

(
θ⊤α− βAh,τ (θ)

)
(102)

for any “pseudo-counts” α ∈ Rm and β ∈ R such that Zh,τ (α, β) =
∫
θ∈Rm exp

(
θ⊤α− βAh,τ (θ)

)
dθ exists. Then

the posterior over θ given x ∼ qh,τ,θ is given by (Lemma I.25)

κh,τ (θ|x;α, β) = πh,τ (θ; τ(x) + α, 1 + β) (103)

thus (102) is a conjugate prior.

Identifying an exponential family. To check if a set of distributions
{
p(x; θ̄)

}
θ̄
is an exponential family, it is

sufficient to propose any h(x) ≥ 0, a transformation of θ̄ into natural parameter form θ = g(θ̄) ∈ Rm and x into
sufficient statistic form τ(x) ∈ Rm, and some function Ah,τ (θ), such that it can be written as (98):

p(x; θ̄) = qh,τ,θ(x) = h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)

In particular, we do not need to explicitly calculate Ah,τ (θ) = log
(∫
x∈Rd h(x) exp

(
θ⊤τ(x)

)
dx
)
since the normal-

ization of p(x; θ̄) enforces it (and guarantees its existence).
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Non-unique parameterization. An exponential family has infinitely many equivalent parameterizations:

qh,τ,θ(x) = qah,u⊙τ,inv(u)⊙θ(x) ∀a ∈ R\ {0} , u ∈ (R\ {0})m

where ⊙ is the elementwise multiplication and inv(u) is the elementwise inverse of vector u. It is often clear what
a natural parameterization is (e.g., choose u that makes τ(x) as simple as possible).

Limitations. A dizzying array of distributions are exponential families, including the normal (Lemma I.23),
categorical, exponential, geometric, Bernoulli, Poisson, beta, and many others. But there are certain properties
that an exponential family cannot capture. First, the form

h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)

implies that the support of this distribution cannot depend on the parameter θ. This rules out distributions like
a uniform distribution on [a, b] ⊂ R whose support depends on the parameters a, b. Second, some distributions
simply cannot be expressed using an inner product between the input and the parameter, for instance the Laplace
distribution

Laplace(µ, b)(x) =
1

2b
exp

(
−|x− µ|

b

)

Third, an exponential family necessarily has a well-defined MGF by (101), so it rules out distributions without an
MGF such as the Cauchy distribution.

E.3 Tweedie’s Formula

Lemma E.1. Define the generative process over t, x ∈ Rd:

t ∼ pT

x|t ∼ pX|T (·|t) pX|T (x|t) =
et

⊤xb(x)

Ex∼b[et
⊤x]

where b is some base distribution (i.e., we are exponential tilting it by t). Let

m(x) =

∫

t∈Rd

pT (t)pX|T (x|t)dt

denote the marginal distribution over x. Define l(x) := logm(x) and l0(x) := log b(x). We have

t|x ∼ Unk(∇l(x)−∇l0(x), ∇2l(x)−∇2l0(x))

Proof. By Bayes’ rule, the posterior over t given x is

pT |X(t|x) = pT (t)pX|T (x|t)
m(x)

= pT (t)Ex∼b[e
t⊤x] exp

(
t⊤x− λ(x)

)

where λ(x) = log m(x)
b(x) . This is an exponential family (98) with base measure h(t) = pT (t)Ex∼b[e

t⊤x], natural

parameter x ∈ Rd, sufficient statistic t ∈ Rd, and the CGF λ(x). By the usual property of the CFG, the mean µ
and the covariance Σ of t ∼ pT |X(·|x) is given by

µ = ∇λ(x) = ∇l(x)−∇l0(x)
Σ = ∇2λ(x) = ∇2l(x)−∇2l0(x)
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Lemma E.2 (Tweedie’s formula). Pick any Σ ≻ 0. Define the generative process over µ, x ∈ Rd:

µ ∼ g

x|µ ∼ N (µ,Σ)

Let m(x) =
∫
µ∈Rd g(µ)N (µ,Σ)(x)dµ denote the marginal distribution over x. Define l(x) := logm(x). Then

µ|x ∼ Unk(x+Σ∇l(x), Σ(Id×d +∇2l(x)Σ))

Proof. We can view x|µ ∼ N (µ,Σ) = N (0d + Σt,Σ) as an exponential tilting of the base distribution b(x) =
N (0d,Σ)(x) by t = Σ−1µ (Lemma I.26). Let l0(x) = log b(x) and note that ∇l0(x) = ∇

(
− 1

2x
⊤Σ−1x

)
= −Σ−1x.

Lemma E.1 states that

t|x ∼ Unk(∇l(x)−∇l0(x), ∇2l(x)−∇2l0(x))

= Unk(Σ−1x+∇l(x), Σ−1 +∇2l(x))

Thus µ = Σt conditioned on x is distributed as

µ|x ∼ Unk(x+Σ∇l(x), Σ+ Σ∇2l(x)Σ)

F Laplace Approximation

Let pZ denote a prior over Z ∈ Rd and pX|Z a likelihood over X given Z. Conditioned on X = x, the Laplace
approximation approximates the true posterior pZ|X(z|x) ∝ pX|Z(x|z)× pZ(z) by a Gaussian:

pZ|X(z|x) ≈ N (z⋆, −Hx(z
⋆)−1) (104)

where lx(z) = log pZ|X(z|x) is the log posterior, z⋆ = argmaxz∈Rd lx(z), and Hx : Rd → Rd×d is the Hessian of lx
(which is assumed to exist). The approximation reflects the idea that the posterior is “pointy” around the mode
and can be directly derived by the second-order Taylor approximation of lx around z⋆,

lx(z
⋆) ≈ 1

2
(z − z⋆)⊤Hx(z

⋆)(z − z⋆) + constant

which, when normalized, becomes the distribution N (z⋆,−Hx(z
⋆)−1).

G Signal-to-Noise Ratio

We give another classical example that illustrates the diminishing returns of SNR using the same model in Sec-
tion 4.1.1. The model is X ∼ N (0, σ2) (signal), Z ∼ N (0, ν2) (noise), and Y = X+Z ∼ N (0, σ2+ν2) (observation).
We have already established that X,Y are jointly normal with Cov (X,Y ) = σ2, i.e.,

[
X
Y

]
∼ N

([
0
0

]
,

[
σ2 σ2

σ2 σ2 + ν2

])

We consider the minimum mean squared error (MMSE) estimator (aka., Bayes-optimal regressor) for the
signal X given the observation Y :

f⋆ = argmin
f :R→R

E[(X − f(Y ))2] = E[X|Y ]

where the last equality is easily verified. This also shows that the MMSE error is the conditional variance of X:

J⋆ = E[(X − f⋆(Y ))2] = E[(X −E[X|Y ])2] = Var (X|Y )
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So we just need to know the mean and variance of X|Y to have a complete knowledge of the estimator. Using
Bayes’ rule (11), we have

X|Y = y ∼ N
(

σ2

σ2 + ν2
y,

σ2ν2

σ2 + ν2

)
= N

(
SNR

1 + SNR
y,

σ2

1 + SNR

)

where SNR = σ2

ν2 > 0. This implies f⋆(y) = SNR
1+SNRy and J⋆ = σ2

1+SNR . Holding σ2 constant (i.e., it is a fixed

characteristic of the signal), we treat ν2 as the variable parameter that determines SNR. In this view, J⋆ as a
function of SNR is plotted as

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
SNR

0.0

0.2

0.4

0.6

0.8

1.0

J*

MMSE Error vs. SNR (with 2 = 1)
J * (SNR) = 2

1 + SNR

It is clear that the MMSE error goes down rapidly in the low-SNR regime, but it saturates in the high-SNR regime
(i.e., J⋆ → 0 as ν2 → 0). Thus for the purpose of reducing the minimum achievable squared loss, increasing SNR
has tremendous effect when it is small but diminishing returns as it gets larger.

H Linear Regression

Let X = (x1 . . . xN ) ∈ RN×d denote N input vectors in matrix form, paired with continuous labels y = (y1 . . . yN ) ∈
RN . In “generalized” least squares, we assume y ∼ N (Xw⋆,Σ) for some unknown w⋆ ∈ Rd and known positive-
definite Σ ∈ RN×N (i.e., yi = w⋆ · xi + ϵi where (ϵ1 . . . ϵN ) ∼ N (0N ,Σ)). The hypothesis class is the family of
conditional distributions N (Xw,Σ) over RN indexed by w ∈ Rd. The maximum-likelihood estimator (MLE) with
an l2 regularization coefficient λ > 0 is

ŵ = argmax
w∈Rd

log (N (Xw,Σ)(y))− λ

2
||w||2

= (X⊤Σ−1X + λId×d)
−1X⊤Σ−1y

= X⊤(XX⊤ + λΣ)−1y (105)

where (105) uses the Welling identity (64). Given a test point xtest ∈ Rd, the “true” label is produced by ytest =
w⋆ ·xtest+ ϵtest where ϵtest ∼ N (0, νtest). However, we predict ŷ = ŵ⊤xtest, plugging in ŵ in place of w⋆ and assuming
there is no test noise. Note that

ŷ = y⊤(XX⊤ + λΣ)−⊤Xxtest

is both (1) a linear combination of the training labels, and (2) a linear combination of the dot products between
the test point and training inputs. The latter view admits the kernel trick: compute the Gram matrix G ∈ RN×N

where Gi,j = k(xi, xj) for a chosen kernel k : Rd×Rd → R (i.e., representing ⟨ϕ(xi), ϕ(xj)⟩ for some feature function

ϕ), compute α = (G+ λΣ)−1y ∈ RN , and predict ŷ =
∑N
i=1 αik(xi, xtest). Note that regularization is necessary to

obtain the kernelized version (this is why it is called kernel ridge regression) and to invoke the representer theorem.

H.1 Baysian Linear Regression

We assume w ∼ N (0d,Ω) for some known positive-definite Ω ∈ Rd×d. We now have a joint distribution p(w, y|X) =
N (0d,Ω)(w)×N (Xw,Σ)(y). By Gaussian Bayes’ rule (Section 3.3), the associated marginal and posterior distri-
butions are

p(y|X) = N
(
0N , Σ+XΩX⊤

)
(y)

π(w|X, y) = N
(
ΩX⊤(XΩX⊤ +Σ)−1y, Ω− ΩX⊤(XΩX⊤ +Σ)−1XΩ

)
(w) (106)
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where (106) uses the Woodbury identity (66). We see that the ridge regressor (105) corresponds to the mode (also
mean) of the posterior (106) using Ω = λ−1Id×d (aka. the MAP estimate). Instead of using a single point, we can
incorporate all of the posterior by considering the “predictive posterior”:

p(ȳ|X, y, xtest) = E
w∼π(·|X,y)

[
N (w⊤xtest, νtest)(ȳ)

]

= N
(
x⊤testΩX

⊤(XΩX⊤ +Σ)−1y, νtest + x⊤testΩxtest − x⊤testΩX
⊤(XΩX⊤ +Σ)−1XΩxtest

)
(ȳ)

(107)

where the marginal (107) is again given by Bayes’ rule. Assuming zero test noise νtest = 0 and defining the kernel
function kΩ(x, x

′) = x⊤Ωx′, we can express the predictive posterior as

ȳ ∼ N
(
kΩ(xtest,X)(kΩ(X) + Σ)−1y, kΩ(xtest)− kΩ(xtest,X)(kΩ(X) + Σ)−1kΩ(X, xtest)

)
(108)

I Lemmas

Lemma I.1 (Polar coordinates). For any integrable f : R → R,

∫

R2

f(x2 + y2)d(x, y) = 2π

∫ ∞

0

f(r2)rdr

Proof. Let R = [0,∞) × [0, 2π] and define g : R → R2 by g(r, θ) = (r cos θ, r sin θ). Note that r2 = x2 + y2 and
g(R) = R2. The Jacobian of g at (r, θ) is

Jg(r, θ) =

[
∂r cos θ
∂r

∂r cos θ
∂θ

∂r sin θ
∂r

∂r sin θ
∂θ

]
=

[
cos θ −r sin θ
sin θ r cos θ

]

Thus |det(Jg(r, θ))| =
∣∣r(cos2 θ + sin2 θ)

∣∣ = r. Thus

∫

R2

f(x2 + y2)d(x, y) =

∫

R

f(g1(r, θ)
2 + g2(r, θ)

2) |Jg(r, θ)| d(r, θ) (by (60))

=

∫

R

f(r2)rd(r, θ)

=

∫ ∞

0

(∫ 2π

0

exp(−r2)rdθ
)
dr (Fubini)

=

∫ ∞

0

2π exp(−r2)rdr (FTC)

= 2π

∫ ∞

0

exp(−r2)rdr (linearity)

Lemma I.2 (Gaussian integral).

∫ ∞

−∞
exp

(
−x2

)
dx =

√
π (109)
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Proof. A standard proof shows that (
∫∞
−∞ exp

(
−x2

)
dx)2 = π as follows:

(∫ ∞

−∞
exp

(
−x2

)
dx

)(∫ ∞

−∞
exp

(
−y2

)
dy

)
=

∫ ∞

−∞

(∫ ∞

−∞
exp

(
−x2

)
dx

)
exp

(
−y2

)
dy (linearity)

=

∫ ∞

−∞

(∫ ∞

−∞
exp

(
−x2

)
exp

(
−y2

)
dx

)
dy (linearity)

=

∫

R2

exp
(
−(x2 + y2)

)
d(x, y) (Fubini)

= 2π

∫ ∞

0

exp
(
−r2

)
rdr (Lemma I.1)

= 2π

(
−1

2
exp(−r2)

) ∣∣∣∣
∞

0

(FTC)

= 2π

(
0 +

1

2

)
= π

Lemma I.3. For any µ ∈ R and σ2 > 0,
∫ ∞

−∞

1√
2πσ

exp

(
− (x− µ)2

2σ2

)
dx = 1 (110)

Proof. Let u = x−µ√
2σ

which gives the infinitesimal dx =
√
2σdu. Then

∫ ∞

−∞

1√
2πσ

exp

(
− (x− µ)2

2σ2

)
dx =

∫ ∞

−∞

√
2σ√
2πσ

exp
(
−u2

)
du (by (58))

=

∫ ∞

−∞

1√
π
exp

(
−u2

)
du

=
1√
π

∫ ∞

−∞
exp

(
−u2

)
du (linearity)

= 1 (Lemma I.2)

Lemma I.4.
∫

Rd

1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
dx = 1

Proof. Let Σ = UΛU⊤ denote an orthonormal eigendecomposition. Let u = g(x) where g(x) = Λ−1/2U⊤(x − µ).
Thus |det(Jg(x))| =

∣∣det(Λ−1/2U⊤)
∣∣ = det(Λ)−1/2, so we have the infinitesimal dx =

√
det(Λ)du. Then

∫

Rd

1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
dx =

∫

Rd

√
det(Λ)

(
√
2π)d

√
det(Λ)

exp

(
−1

2
u⊤u

)
du

=

∫

Rd

d∏

i=1

1√
2π

exp

(
−u

2
i

2

)
du

By Fubini and linearity,

∫

Rd

d∏

i=1

1√
2π

exp

(
−u

2
i

2

)
du =

∫ ∞

−∞

(
· · ·
(∫ ∞

−∞

d∏

i=1

1√
2π

exp

(
−u

2
i

2

)
du1

)
· · ·
)
dud

=

d∏

i=1

∫ ∞

−∞

1√
2π

exp

(
−u

2
i

2

)
dui

=

(∫ ∞

−∞

1√
2π

exp

(
−x

2

2

)
dx

)d
= 1
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where the last step applies Lemma I.3 with µ = 0 and σ2 = 1.

Lemma I.5. For any λ > 0, the exponential distribution eλ(x) := λ exp(−λx) over [0,∞) has entropy

H(X) = 1− log λ

Proof.

H(X) = −
∫ ∞

0

λ exp(−λx) log(λ exp(−λx))dx

= − log λ− λ

∫ ∞

0

exp(−λx)(−λx)dx

We evaluate the last integral as follows. Let u = g(x) = −λx, then g′(x) = −λ so that
∣∣g′(g−1(u))−1

∣∣ = 1/λ.
Reorienting the region between g(0) = 0 and g(∞) = −∞ and applying (59),

λ

∫ ∞

0

exp(−λx)(−λx)dx =

∫ 0

−∞
exp(u)udu

= exp(u)u|0−∞ −
∫ 0

−∞
exp(u)du (integration by parts (57))

= (0− 0)− exp(u)|0−∞ (limu→−∞ exp(u)u = 0)

= −1

Lemma I.6. Define ∆ := µ′ − µ. Then

H(N (µ′,Σ′),N (µ,Σ)) =
1

2
∆⊤Σ−1∆+

1

2
tr
(
Σ−1Σ′)+ 1

2
log((2π)d det(Σ))

Proof.

H(N (µ′,Σ′),N (µ,Σ)) := E
x∼N (µ′,Σ′)

[− logN (µ,Σ)(x)]

=
1

2
E

x∼N (µ′,Σ′)

[
(x− µ)⊤Σ−1(x− µ)

]
+

1

2
log((2π)d det(Σ))

By the cyclic property and the linearity of trace,

E
x∼N (µ′,Σ′)

[
(x− µ)⊤Σ−1(X − µ)

]
= E
x∼N (µ′,Σ′)

[
tr
(
(x− µ)⊤Σ−1(x− µ)

)]

= E
x∼N (µ′,Σ′)

[
tr
(
Σ−1(x− µ)(x− µ)⊤

)]

= tr

(
Σ−1 E

x∼N (µ′,Σ′)

[
(x− µ)(x− µ)⊤

])

Rewriting the expectation,

E
x∼N (µ′,Σ′)

[
(x− µ)(x− µ)⊤

]
= E
x∼N (µ′,Σ′)

[
(x− µ′ +∆)(x− µ′ +∆)⊤

]

= E
x∼N (µ′,Σ′)

[
(x− µ′)(x− µ′)⊤ + (x− µ′)∆⊤ +∆(x− µ′)⊤ +∆∆⊤]

= Σ′ +∆∆⊤

Therefore we have

H(N (µ′,Σ′),N (µ,Σ)) =
1

2
tr
(
Σ−1Σ′ +Σ−1∆∆⊤)+ 1

2
log((2π)d det(Σ))

=
1

2
tr
(
Σ−1Σ′)+ 1

2
∆⊤Σ−1∆+

1

2
log((2π)d det(Σ))
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Corollary I.7 (Of Lemma I.6).

H(N (µ,Σ)) =
1

2
log
(
(2πe)d det(Σ)

)

Corollary I.8 (Of Lemma I.6 and Corollary I.7). Define ∆ := µ′ − µ. Then

KL(N (µ′,Σ′),N (µ,Σ)) =
1

2
∆⊤Σ−1∆+

1

2
tr
(
Σ−1Σ′ − Id×d

)
+

1

2
log

det(Σ)

det(Σ′)

Lemma I.9. Let A ∈ Rd×d. The main-diagonal block matrix of A at index k ∈ {1 . . . d} with size n is a matrix
B(k, n) ∈ Rn×n with entries Bi,j(k, n) = Ak+i−1,k+j−1 for i, j ∈ {1 . . . n}. If A ≻ 0, then B(k, n) ≻ 0 for all valid
k, n.

Proof. Suppose u⊤B(k, n)u ≤ 0 for some nonzero u ∈ Rn. Define v ∈ Rd where vk+i−1 = ui for i = 1 . . . n and
other entries are zero. Then v is nonzero and v⊤Av = u⊤B(k, n)u ≤ 0, contradicting the premise that A ≻ 0.

Lemma I.10. Let µ ∈ Rd, Σ ∈ Rd×d≻0 , A ∈ Rd′×d and Ω ∈ Rd
′×d′

≻0 . Then for all y ∈ Rd′ ,

E
X∼N (µ,Σ)

[logN (AX,Ω)(y)] = logN (Aµ,Ω)(y)− 1

2
tr
(
Ω−1AΣA⊤)

Proof. We have

logN (AX,Ω)(y) = −1

2
log
(
2π det(Ω)d

′
)
− 1

2
(y −AX)

⊤
Ω−1 (y −AX)

where

(y −AX)
⊤
Ω−1 (y −AX) = tr

(
(y −AX)

⊤
Ω−1 (y −AX)

)

= tr
(
Ω−1 (y −AX) (y −AX)

⊤
)

= tr
(
Ω−1

(
yy⊤ − yX⊤A⊤ −AXy⊤ +AXX⊤A⊤))

Since the trace is linear,

E
X∼N (µ,Σ)

[
tr
(
Ω−1

(
yy⊤ − yX⊤A⊤ −AXy⊤ +AXX⊤A⊤))]

= tr

(
E

X∼N (µ,Σ)

[
Ω−1

(
yy⊤ − yX⊤A⊤ −AXy⊤ +AXX⊤A⊤)]

)

= tr
(
Ω−1

(
yy⊤ − y(Aµ)⊤ −Aµy⊤ +A

(
µµ⊤ +Σ

)
A⊤))

= tr
(
Ω−1

(
yy⊤ − y(Aµ)⊤ −Aµy⊤ +Aµ(Aµ)⊤ +AΣA⊤))

= tr
(
Ω−1 (y −Aµ) (y −Aµ)

⊤
)
+ tr

(
Ω−1AΣA⊤)

= (y −Aµ)
⊤
Ω−1 (y −Aµ) + tr

(
Ω−1AΣA⊤)

Thus

E
X∼N (µ,Σ)

[logN (AX,Ω)(y)] = −1

2
log
(
2π det(Ω)d

′
)
− 1

2
(y −Aµ)

⊤
Ω−1 (y −Aµ)− 1

2
tr
(
Ω−1AΣA⊤)

= logN (Aµ,Ω)(y)− 1

2
tr
(
Ω−1AΣA⊤)

Lemma I.11. Let X ∼ N (µ,Σ). For any A ∈ Rn×d and B ∈ Rm×d,

AΣB⊤ = 0n×m ⇔ AX ∈ Rn and BX ∈ Rm are independent
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Proof. If A or B is zero then the statement is trivially true (a constant is independent by definition). Otherwise,
for all nonzero (u, v) ∈ Rn+m, (u, v)⊤(AX,BX) = (u⊤A + v⊤B)X is normal by the closure under linear trans-
formation (2). Thus (AX,BX) is normal by 4. Hence AX and BX are independent iff they are uncorrelated:
E
[
A(X − µ)(X − µ)⊤B⊤] = AΣB⊤ = 0n×m.

Lemma I.12. Let X ∈ Rd and Y ∈ Rd′ be jointly normal with parameters (µ,Σ). Assume that ΣY −ΣY XΣ−1
X ΣXY

is invertible. Then for any z = (x, y) ∈ Rd+d′ ,

1

(
√
2π)d+d′

√
det(Σ)

exp

(
−1

2
(z − µ)⊤Σ−1(z − µ)

)
=

1

(
√
2π)d

√
det(ΣX)

exp

(
−1

2
(x− µX)⊤Σ−1

X (x− µX)

)

× 1

(
√
2π)d′

√
det(Ω)

exp

(
−1

2
(y − ϕ(x))⊤Ω−1(y − ϕ(x))

)

(111)

where Ω ∈ Rd′×d′ and ϕ(x) ∈ Rd′ are defined as

Ω := ΣY − ΣY XΣ−1
X ΣXY (112)

ϕ(x) := µY +ΣY XΣ−1
X (x− µX) ∀x ∈ Rd (113)

Proof. By the block matrix inversion rule (68) and abbreviating O = Σ−1
X ΣXY ,

Σ−1 =

[
ΣX ΣXY
ΣY X ΣY

]−1

=

[
Σ−1
X +OΩ−1O⊤ −OΩ−1

−Ω−1O⊤ Ω−1

]

Abbreviating u = x− µX and v = y − µY ,

(z − µ)⊤Σ−1(z − µ) = u⊤
(
Σ−1
X +OΩ−1O⊤)u− u⊤OΩ−1v − v⊤Ω−1O⊤u+ v⊤Ω−1v

= u⊤Σ−1
X u+ u⊤OΩ−1O⊤u− 2u⊤OΩ−1v + v⊤Ω−1v

= u⊤Σ−1
X u+ (v −O⊤u)⊤Ω−1(v −O⊤u)

= (x− µX)⊤Σ−1
X (x− µX) + (y − ϕ(x))⊤Ω−1(y − ϕ(x))

where we use the fact that Ω is symmetric. By the block matrix determinant rule (69), we have det(Σ) =
det(ΣX) det(Ω). Applying these identities to the LHS of (111) yields the RHS.

Lemma I.13. Let (X,Y ) ∼ N (µ,Σ) where X ∈ Rd, Y ∈ Rd′ and

µ =

[
µX
µY

]
Σ =

[
ΣX ΣXY
ΣY X ΣY

]
Λ =

[
ΛX ΛXY
ΛY X ΛY

]
= Σ−1

(i.e., Λ is the precision matrix). Then

Y |X = x ∼ N
(
µY − Λ−1

Y ΛY X(x− µX), Λ−1
Y

)

Proof. We can derive the log conditional probability of Y = y given X = x from the log joint probability X =
x, Y = x by treating all terms not involving y as constants. Thus

log Pr (Y = y|X = x) = −1

2
((x, y)− µ)⊤Σ−1((x, y)− µ) + C

= −1

2
((x, y)− µ)⊤Λ((x, y)− µ) + C

= −1

2
(y − µY )

⊤ΛY (y − µY )− (x− µX)⊤ΛXY (y − µY ) + C ′

= −1

2
y⊤ΛY y +

(
µ⊤
Y ΛY − (x− µX)⊤ΛXY

)
y + C ′′

where the key step is directly expanding the precision matrix instead of inverse covariance. By matching the
first- and second-order terms in Definition 5, we have Y |X = x ∼ N (ν(x),Ω) where Ω = Λ−1

Y and ν(x) =
Λ−1
Y (ΛY µY − ΛY X(x− µX)) = µY − ΛY X(x− µX).
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Lemma I.14. Let X ∼ N (µ,ΣX) and Y |X = x ∼ N (Ax+ b,ΣY ) for some A ∈ Rd′×d and b ∈ Rd′ . Then
[
X
Y

]
∼ N

([
µ

Aµ+ b

]
,

[
ΣX ΣXA

⊤

AΣX ΣY +AΣXA
⊤

])

with the marginal and posterior distributions

Y ∼ N (Aµ+ b,ΣY +AΣXA
⊤)

X|Y = y ∼ N (Λ−1
X (Σ−1

X µ+A⊤Σ−1
Y (y − b)), Λ−1

X ) Λ−1
X = (Σ−1

X +A⊤Σ−1
Y A)−1

Proof. With a bit of algebra, we can express the log probability of the variable Z = (X,Y ) ∈ Rd+d′ in the quadratic
form:

−2 log Pr

(
Z =

[
x
y

])
= −2 log Pr (X = x)− 2 log Pr (Y = y|X = x)

= (x− µ)⊤Σ−1
X (x− µ) + (y −Ax− b)⊤Σ−1

Y (y −Ax− b) + C

= x⊤(Σ−1
X +A⊤Σ−1

Y A)x+ y⊤Σ−1
Y y − y⊤Σ−1

Y Ax− x⊤A⊤Σ−1
Y y

+ 2x⊤(A⊤Σ−1
Y b− Σ−1

X µ)− 2y⊤Σ−1
Y b+ C ′

=
[
x⊤ y⊤

] [Σ−1
X +A⊤Σ−1

Y A −A⊤Σ−1
Y

−Σ−1
Y A Σ−1

Y

]

︸ ︷︷ ︸
Λ

[
x
y

]
+ 2

[
A⊤Σ−1

Y b− Σ−1
X µ

−Σ−1
Y b

]

︸ ︷︷ ︸
−u

[
x
y

]
+ C ′

which shows that the log probability of Z = z is − 1
2z

⊤Λz+u⊤z+C ′′ for some constant C ′′ ∈ R. Thus Z ∼ N (ν,Σ)
where Σ = Λ−1 and ν = Σu (Definition 5). By the block matrix inversion rule (68),

Σ = Λ−1 =

[
ΣX −ΣX(−A⊤Σ−1

Y )ΣY
−ΣY (−Σ−1

Y A)ΣX ΣY +ΣY (−Σ−1
Y A)ΣX(−A⊤Σ−1

Y )ΣY

]
=

[
ΣX ΣXA

⊤

AΣX ΣY +AΣXA
⊤

]

Likewise, the mean is given by a lot of canceling terms:

ν = Σu =

[
ΣX ΣXA

⊤

AΣX ΣY +AΣXA
⊤

] [
Σ−1
X µ−A⊤Σ−1

Y b
Σ−1
Y b

]
=

[
µ

Aµ+ b

]

This shows the statement about the marginal probability of Y . To obtain the statement about the posterior
probability of X given Y = y, we use the precision matrix form which states that (swapping X and Y in (9))

X|Y = x ∼ N
(
µX − Λ−1

X ΛXY (y − µY ), Λ
−1
X

)

where µX = µ, µY = Aµ + b, ΛX = Σ−1
X + A⊤Σ−1

Y A, and ΛXY = −A⊤Σ−1
Y . Noting ΛX = Σ−1

X − ΛXYA, we can
simplify the mean as

µ− Λ−1
X ΛXY (y −Aµ− b) = Λ−1

X (ΛXµ− ΛXY (y −Aµ− b)) = Λ−1
X (Σ−1

X µ+A⊤Σ−1
Y (y − b))

Lemma I.15. Let X ∈ Rd and Y ∈ Rd′ be jointly normal with parameters (µ,Σ). Assume that ΣY −ΣY XΣ−1
X ΣXY

is invertible. Then for any x ∈ Rd,

H(Y |X = x) =
1

2
log
(
(2πe)d

′
det(ΣY − ΣY XΣ−1

X ΣXY )
)

(114)

I(X,Y ) =
1

2
log

(
det(ΣX) det(ΣY )

det(Σ)

)
(115)
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Proof. By Lemma I.12, Y |X = x is distributed as N (ϕ(x),Ω) for any x ∈ Rd where ϕ(x) := µY +ΣY XΣ−1
X (x−µX)

and Ω := ΣY − ΣY XΣ−1
X ΣXY . Thus

H(Y |X = x) = E [− log Pr(Y |X = x)] =
1

2
E
[
(Y − ϕ(x))⊤Ω−1(Y − ϕ(x))

]
+

1

2
log((2π)d

′
det(Ω))

Using the cyclic property and linearity of trace, the first term is

1

2
E
[
(Y − ϕ(x))⊤Ω−1(Y − ϕ(x))

]
=

1

2
tr
(
Ω−1E

[
(Y − ϕ(x))(Y − ϕ(x))⊤

])
=
d′

2

This shows (114) (note the Euler constant e). To show (115), we have

I(X,Y ) = H(Y )−H(Y |X)

=
1

2
log
(
(2πe)d

′
det(ΣY )

)
− 1

2
log
(
(2πe)d

′
det(Ω)

)

=
1

2
log

(
det(ΣY )

det(Ω)

)

=
1

2
log

(
det(ΣX) det(ΣY )

det(Σ)

)

where for the last equality we use the fact that det(Σ) = det(ΣXΩ) = det(ΣX) det(Ω).

Lemma I.16. The following statements about X ∈ Rd are equivalent.

1. X ∼ N (µ,Σ), that is, Pr(X = x) = 1

(
√
2π)d

√
det(Σ)

exp
(
− 1

2 (x− µ)⊤Σ−1(x− µ)
)
.

2. MX(t) = exp(t⊤µ+ 1
2 t

⊤Σt) for all t ∈ Rd.

3. X = Σ1/2Z + µ where Z ∼ N (0d, Id×d).

4. Y = a⊤X has the density N (a⊤µ, a⊤Σa) for all nonzero a ∈ Rd.

5. log Pr(X = x) = − 1
2 (x− µ)⊤Σ−1(x− µ) +C = − 1

2x
⊤Σ−1x+ (Σ−1µ)⊤x+C ′ for some constants C,C ′ ∈ R.

Proof. Lemma D.1 gives 1 ≡ 2. To show 2 ≡ 3 we note that by (87)

MΣ1/2Z+µ(t) = exp
(
t⊤µ

)
MZ(Σ

1/2t) = exp

(
t⊤µ+

1

2
t⊤Σt

)
=MX(t)

We have 1 ⇒ 4 since the density of Y is N (a⊤µ, a⊤Σa) by Lemma D.2. To show 4 ⇒ 2, pick any nonzero a ∈ Rd.
For all t ∈ R

MX(ta) =Ma⊤X(t) = exp

(
ta⊤µ+

1

2
t2a⊤Σa

)

where the first equality uses (87) and the second equality uses Lemma D.1. Setting t = 1 gives MX(a) =
exp

(
a⊤µ+ 1

2a
⊤Σa

)
. Additionally, MX(0d) = 1 = exp

(
0⊤d µ+ 1

20
⊤
d Σ0d

)
. Thus MX(t) = exp(t⊤µ + 1

2 t
⊤Σt) for

all t ∈ Rd. To show 1 ⇒ 5, the log probability of X = x where X ∼ N (µ,Σ) is

log Pr(X = x) = −1

2
(x− µ)⊤Σ−1(x− µ) + C1

= −1

2
x⊤Σ−1x+ µ⊤Σ−1x− 1

2
µ⊤Σ−1µ+ C1 (“expanding the square”)

= −1

2
x⊤Σ−1x+ (Σ−1µ)⊤x+ C2

where C1, C2 ∈ R are some constants independent of x. To show 5 ⇒ 1, note that

log Pr(X = x) = −1

2
x⊤Σ−1x+ (Σ−1µ)⊤x+ C

= −1

2
x⊤Σ−1x+ µ⊤Σ−1x− 1

2
µ⊤Σ−1µ+

1

2
µ⊤Σ−1µ+ C

= −1

2
(x− µ)⊤Σ−1(x− µ) + C ′ (“completing the square”)
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where C ′ is a constant. This implies, for the constant C ′′ = exp(C ′),

Pr(X = x) = C ′′ exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)

Since
∫
x∈Rd Pr(X = x)dx = 1, we have

C ′′ =
1∫

x∈Rd exp
(
− 1

2 (x− µ)⊤Σ−1(x− µ)
)
dx

=
1

(
√
2π)d

√
det(Σ)

where the second equality is by Lemma I.4.

Lemma I.17 (Popoviciu’s inequality). For any bounded scalar random variable X ∈ [a, b],

Var (X) ≤ (b− a)2

4

with equality iff Pr(X = a) = Pr(X = b) = 1
2 .

Proof. For any constant c ∈ R, E[(X − c)2] = E[(X −E[X] +E[X]− c)2] ≥ Var (X). Choosing c = b−a
2 and using

the fact that
∣∣X − b−a

2

∣∣ ≤ b−a
2 , we have Var (X) ≤ E[(X − b−a

2 )2] ≤ (b−a)2
4 .

Lemma I.18 (Markov’s inequality). For any nonnegative scalar random variable X ≥ 0, for any ϵ > 0:

Pr(X ≥ ϵ) ≤ E[X]

ϵ

Proof.

E[X] =

∫ ∞

0

Pr(X = x)x dx (proof similar if X is discrete)

≥
∫ ∞

ϵ

Pr(X = x)x dx

≥
∫ ∞

ϵ

Pr(X = x)ϵ dx

≥ ϵPr(X ≥ ϵ)

Lemma I.19 (Chernoff’s inequality). For any scalar random variable X ∈ R and ϵ ≥ E[X],

Pr(X ≥ ϵ) ≤ e−ψ
∗
X(ϵ)

where ψ∗
X(ϵ) = supt∈R tϵ− ψX(t) is the Legendre transform of the CGF ψX(t) = logE[etX ].

Proof.

Pr(X ≥ ϵ) ≤ Pr(tX ≥ tϵ) ∀t ≥ 0

= Pr(etX ≥ etϵ)

=
E[etX ]

etϵ
(Markov’s inequality, since etX ≥ 0 and etϵ > 0)

= e−(tϵ−ψX(t))

In particular,

Pr(X ≥ ϵ) ≤ inf
t≥0

e−(tϵ−ψX(t))

= e−(supt≥0 tϵ−ψX(t))

= e−(supt∈R tϵ−ψX(t)) (116)

= e−ψ
∗
X(ϵ)

The step (116) uses the following lemma.
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Lemma. Let J(t) := tϵ− ψX(t) and J∗ = supt∈R J(t). Then J∗ ≥ J(0).

Proof.

J(t) = tϵ− logE[etX ]

≤ tϵ− tE[X] (Jensen’s inequality: logE[X] ≥ E[logX])

= t (ϵ−E[X])︸ ︷︷ ︸
≥0

Thus J(t) ≤ 0 for all t < 0. The lemma follows from the fact that J(0) = 0.

Theorem I.20 (Factorization Theorem). Assume a joint distribution

pΘXT (θ, x, t) = pΘ(θ)× pX|Θ(x|θ)× [[τ(x) = t]]

where X ∈ X is a sample from a distribution parameterized by Θ ∈ H, and T = τ(X) ∈ T is the sample statistic for
some function τ : X → T . The following statements about τ are equivalent: if any holds, we say τ is a sufficient
statistic for Θ.

• X is conditionally independent of Θ given T = t:

pX|T (x|t) = pX|TΘ(x|t, θ) (117)

• There exist fT : X → R and g : T ×H → R such that

pX|Θ(x|θ) = fT (x)× g(τ(x), θ) (118)

Proof. (118)⇒(117): For any t, θ,

pT |Θ(t|θ) =
∑

x∈X : τ(x)=t

pX|Θ(x|θ) (proof similar if X is continuous)

=
∑

x∈X : τ(x)=t

fT (x)× g(τ(x), θ) (118)

=


 ∑

x∈X : τ(x)=t

fT (x)


× g(t, θ)

thus for any x satisfying τ(x) = t,

pX|TΘ(x|t, θ) =
pXT |Θ(x, t|θ)
pT |Θ(t|θ)

=
fT (x)× g(t, θ)(∑

x∈X : τ(x)=t fT (x)
)
× g(t, θ)

=
fT (x)∑

x∈X : τ(x)=t fT (x)

and pX|TΘ(x|t, θ) = 0 for x such that τ(x) ̸= t. This implies pX|T (x|t) = pX|TΘ(x|t, θ) for all θ.

(117)⇒(118): Define fT (x) = pX|T (x|τ(x)) and g(t, θ) = pT |Θ(t|θ). Then

pX|Θ(x|θ) = pXT |Θ(x, τ(x)|θ)
= pX|TΘ(x|τ(x), θ)× pT |θ(τ(x)|θ)
= pX|T (x|τ(x))× pT |Θ(τ(x)|θ) (117)

= fT (x)× g(τ(x), θ)

Lemma I.21. Let X ∈ X be a random variable and τ : X → Rm be a function such that

Bp,τ (θ) := logE
[
eθ

⊤τ(X)
]

exists for all θ ∈ Rm. Then Bp,τ : Rm → R is convex.
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Proof. We use Hölder’s inequality which states that E[|XY |] ≤ E[|X|p] 1pE[|Y |q] 1q for any p, q ≥ 1 satisfying 1
p+

1
q =

1. For any α ∈ [0, 1] and θ, ω ∈ Rm:

exp (Bp,τ (αθ + (1− α)ω)) = E
[
eαθ

⊤τ(X)+(1−α)ω⊤τ(X)
]

= E
[∣∣∣eαθ⊤τ(X)

∣∣∣
∣∣∣e(1−α)ω⊤τ(X)

∣∣∣
]

≤ E

[∣∣∣eαθ⊤τ(X)
∣∣∣

1
α

]α
E

[∣∣∣e(1−α)ω⊤τ(X)
∣∣∣

1
1−α

](1−α) (
p =

1

α
, q =

1

1− α

)

= E
[
eθ

⊤τ(X)
]α

E
[
eω

⊤τ(X)
](1−α)

= exp (Bp,τ (θ))
α
exp (Bp,τ (ω))

(1−α)

Taking the log on both sides yields Bp,τ (αθ + (1− α)ω) ≤ αBp,τ (θ) + (1− α)Bp,τ (ω).

Lemma I.22. Let p be a distribution over Rd and define qp,τ,θ(x) :=
eθ

⊤τ(x)p(x)

Ex′∼p[e
θ⊤τ(x′)]

for function τ : Rd → Rm and

θ ∈ Rm where Ex′∼p[e
θ⊤τ(x′)] exists. Let Bp,τ (θ) := logEx∼p[e

θ⊤τ(x)]. Then

∇Bp,τ (θ) = E
x∼qp,τ,θ

[τ(x)]

∇2Bp,τ (θ) = Cov
x∼qp,τ,θ

(τ(x))

Proof.

∇Bp,τ (θ) =
Ex∼p[e

θ⊤τ(x)τ(x)]

Ex′∼p[eθ
⊤τ(x′)]

∇2Bp,τ (θ) =
Ex∼p[e

θ⊤τ(x)τ(x)τ(x)⊤]

Ex′∼p[eθ
⊤τ(x′)]

−
(
Ex∼p[e

θ⊤τ(x)τ(x)]

Ex′∼p[eθ
⊤τ(x′)]

)(
Ex∼p[e

θ⊤τ(x)τ(x)]

Ex′∼p[eθ
⊤τ(x′)]

)⊤

Thus by the definition of qp,τ,θ

∇Bp,τ (θ) = E
x∼qp,τ,θ

[τ(x)]

∇2Bp,τ (θ) = E
x∼qp,τ,θ

[
τ(x)τ(x)⊤

]
−
(

E
x∼qp,τ,θ

[τ(x)]

)(
E

x∼qp,τ,θ
[τ(x)]

)⊤

Lemma I.23. N (µ,Σ) is in the exponential family, with one parameterization given by

h(x) =
1

(
√
2π)d

(base measure)

θ =

[
Σ−1µ

− 1
2vec

(
Σ−1

)
]
∈ Rd(d+1) (natural parameter)

τ(x) =

[
x

vec
(
xx⊤

)
]
∈ Rd(d+1) (sufficient statistic)

Ah,τ (θ) =
1

2

(
µ⊤Σ−1µ+ log (det(Σ))

)
(log-partition function)

where vec(M) ∈ Rn2

is the vector form of matrix M ∈ Rn×n with [vec(M)](i−1)n+j =Mi,j .
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Proof.

N (µ,Σ)(x) =
1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)

=
1

(
√
2π)d

exp

(
µ⊤Σ−1x− 1

2
x⊤Σ−1x− 1

2
µ⊤Σ−1µ− 1

2
log (det(Σ))

)

=
1

(
√
2π)d

exp

([
Σ−1µ

− 1
2vec

(
Σ−1

)
]⊤ [

x
vec
(
xx⊤

)
]
− 1

2

(
µ⊤Σ−1µ+ log (det(Σ))

)
)

where we use the fact that u⊤Mv = vec(M)⊤vec(uv⊤).

Lemma I.24. Let qh,τ,θ(x) = h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
with Ah,τ (θ) = log

(∫
x∈Rd h(x) exp

(
θ⊤τ(x)

)
dx
)
denote

an exponential family. The log-MGF of the sufficient statistic τ(x) is given by

ψτ(X)(t) = Ah,τ (θ + t)−Ah,τ (θ)

Proof.

Mτ(X)(t) = E
x∼qh,τ,θ

[
exp(t⊤τ(x))

]

=

∫

x∈Rd

h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
exp(t⊤τ(x))dx

= exp (−Ah,τ (θ))
∫

x∈Rd

h(x) exp
(
(θ + t)⊤τ(x)

)
dx

= exp (Ah,τ (θ + t)−Ah,τ (θ))

Lemma I.25. Let qh,τ,θ(x) = h(x) exp
(
θ⊤τ(x)−Ah,τ (θ)

)
with Ah,τ (θ) = log

(∫
x∈Rd h(x) exp

(
θ⊤τ(x)

)
dx
)
denote

an exponential family. Define a distribution over θ ∈ Rm by

πh,τ (θ;α, β) :=
1

Zh,τ (α, β)
exp

(
θ⊤α− βAh,τ (θ)

)

for α ∈ Rm and β ∈ R such that Zh,τ (α, β) :=
∫
θ∈Rm exp

(
θ⊤α− βAh,τ (θ)

)
dθ exists. Then the conditional

distribution over θ given x is

κh,τ (θ|x;α, β) = πh,τ (θ; τ(x) + α, 1 + β)

Proof. By Bayes’ rule,

κh,τ (θ|x;α, β) ∝ πh,τ (θ;α, β)× qh,τ,θ(x)

=
1

Zh,τ (α, β)
exp

(
θ⊤α− βAh,τ (θ)

)
× h(x) exp

(
θ⊤τ(x)−Ah,τ (θ)

)

∝ exp
(
θ⊤(τ(x) + α)− (1 + β)Ah,τ (θ)

)

This implies κh,τ (θ|x;α, β) = πh,τ (θ; τ(x) + α, 1 + β).

Lemma I.26. Let Xt denote the t-tilted X ∼ N (µ,Σ) using τ(x) = x. Then

Xt ∼ N (µ+Σt,Σ)
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Proof. We can directly verify this claim using the fact that the CGF of X is µ⊤t+ 1
2 t

⊤Σt:

Pr(Xt = x) =
et

⊤x

Ex′∼N (µ,Σ)[et
⊤x′ ]

N (µ,Σ)(x)

=
1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ) + t⊤x− µ⊤t− 1

2
t⊤Σt

)

=
1

(
√
2π)d

√
det(Σ)

exp

(
−1

2
(x− µ− Σt)⊤Σ−1(x− µ− Σt)

)

Lemma I.27 (Hoeffding’s lemma). Let X ∈ [a, b] be a bounded scalar random variable. Then

ψX−E[X](t) ≤
(b− a)2t2

8

Proof. For any t ∈ R, by Taylor’s approximation of ψX around 0, for some η between 0 and t:

ψX(t) = ψX(0)︸ ︷︷ ︸
0

+ψ′
X(0)︸ ︷︷ ︸
E[X]

t+
1

2
ψ′′
X(η)︸ ︷︷ ︸

Var(Xη)

t2 ⇔ ψX−E[X](t) =
Var (Xη) t

2

2

where Xη ∈ [a, b] is the η-tilted X (89). By Popoviciu’s inequality (Lemma I.17), Var (Xη) ≤ (b−a)2
4 .

Lemma I.28. Let ψ∗
X(t) := supλ∈Rd λ⊤t− ψX(λ) denote the Legendre transform of ψX . If X ∼ N (µ,Σ),

ψ∗
X(t) =

1

2
(t− µ)⊤Σ−1(t− µ)

Proof. J(λ) = λ⊤t− ψX(λ) is concave in λ ∈ Rd since ψX is convex. The stationary condition is

∇J(λ) = t−∇ψX(λ) = t− µ− Σλ = 0d

Thus λ∗ = Σ−1(t− µ) is the maximizer of J . Then

ψ∗
X(t) = (λ∗)⊤t− ψX(λ∗)

= (λ∗)⊤t− (λ∗)⊤µ− 1

2
(λ∗)⊤Σλ∗

= (t− µ)⊤Σ−1t− (t− µ)⊤Σ−1µ− 1

2
(t− µ)⊤Σ−1(t− µ)

=
1

2
(t− µ)⊤Σ−1(t− µ)

Lemma I.29. If X ∼ G(σ2), then Var (X) ≤ σ2.

Proof. By the Taylor series of ez = 1 + z + z2

2 + z3

6 + · · · ,

f(t) := E[etX ] = E

[
1 + tX +

t2X2

2
+
t3X3

6
+ · · ·

]
= 1 +

t2E
[
X2
]

2
+ t3P1(t)

g(t) := E[e
σ2t2

2 ] = 1 +
σ2t2

2
+
σ4t4

4
+ · · · = 1 +

σ2t2

2
+ t3P2(t)

where P1, P2 are some polynomials. By premise, for all t ∈ R

f(t) ≤ g(t) ⇔ t2E
[
X2
]

2
+ t3P1(t) ≤

σ2t2

2
+ t3P2(t)

⇔ E[X2]− σ2 ≤ tG(t)
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where G is again some polynomial. Thus

E[X2]− σ2 ≤ lim
t→0

tG(t) = 0 ⇔ E[X2] ≤ σ2

Lemma I.30. If X,Z ∈ R are random variables with the CGFs ψX , ϕZ : R → R,

ψX(t) ≤ ϕZ(t) ∀t ∈ R ⇒ exp(−ψ∗
X(t)) ≤ exp(−ϕ∗Z(t)) ∀t ∈ R

where ψ∗
X(t) = supλ∈R λt− ψX(t) is the Legendre transform of ψX (similarly for ψ∗

Z(t)).

Proof.

ψX(t) ≤ ϕZ(t) ⇔ −ψX(t) ≥ −ϕZ(t)
⇔ λt− ψX(t) ≥ λt− ϕZ(t) ∀λ ∈ R
⇒ sup

λ∈R
λt− ψX(t) ≥ sup

λ∈R
λt− ϕZ(t)

⇔ ψ∗
X(t) ≥ ϕ∗Z(t)

⇔ −ψ∗
X(t) ≤ −ϕ∗Z(t)

⇔ exp(−ψ∗
X(t)) ≤ exp(−ϕ∗Z(t))

Lemma I.31. If X1 . . . XN are independently sub-Gaussian with Xi ∼ G(σ2
i ), then for all ϵ ≥ 0:

Pr

(∣∣∣∣∣
1

N

N∑

i=1

Xi

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp


− N2ϵ2

2
(∑N

i=1 σ
2
i

)




Proof. Let X̃ :=
∑N
i=1Xi. Note that X̃ ∼ G(∑N

i=1 σ
2
i ) (4) and −X̃ ∼ G(∑N

i=1 σ
2
i ) (2). Thus

Pr

(∣∣∣∣
1

N
X̃

∣∣∣∣ ≥ ϵ

)
= Pr

(
1

N
X̃ ≤ −ϵ ∨ 1

N
X̃ ≥ ϵ

)

≤ Pr

(
1

N
X̃ ≤ −ϵ

)
+ Pr

(
1

N
X̃ ≥ ϵ

)
(union bound)

= Pr
(
−X̃ ≥ Nϵ

)
+ Pr

(
X̃ ≥ Nϵ

)

≤ 2 exp


− N2ϵ2

2
(∑N

i=1 σ
2
i

)


 (3)

Lemma I.32. The gradient ∇N (µ,Σ) : Rd → Rd and the Hessian ∇2N (µ,Σ) : Rd → Rd×d of N (µ,Σ) : Rd → [0, 1]
are

(∇N (µ,Σ)) (x) = −N (µ,Σ)(x)× Σ−1(x− µ)
(
∇2N (µ,Σ)

)
(x) = −N (µ,Σ)(x)×

(
Σ−1 − Σ−1(x− µ)(x− µ)⊤Σ−1

)

The Hessian is negative-definite at x = µ, but possibly indefinite at other points.

Proof. Shorthanding p(x) = N (µ,Σ)(x), C = ((
√
2π)d

√
det(Σ))−1, and g(x) = − 1

2 (x − µ)⊤Σ−1(x − µ) where
∇g(x) = −Σ−1(x− µ), we have

∇p(x) = C∇ exp (g(x)) = C exp (g(x))∇g(x) = p(x)
(
−Σ−1(x− µ)

)
= p(x)k(x)
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with k(x) = −Σ−1(x− µ). Denoting the Jacobian Jk(x) = −Σ−1, we have

∇2p(x) = p(x)Jk(x) + k(x) (∇p(x))⊤ = −p(x)Σ−1 + p(x)k(x)k(x)⊤ = −p(x)
(
Σ−1 − Σ−1(x− µ)(x− µ)⊤Σ−1

)

Now we analyze the Hessian H(x) = ∇2p(x). To show that it is negative-definite at x = µ, we simply note that

H(µ) = − p(µ)︸︷︷︸
>0

Σ−1
︸︷︷︸
≻0

≺ 0

(the inverse of a positive-definite matrix Σ remains positive-definite). For the last statement, it is sufficient to give
an example of an indefinite Hessian. Let µ = (0, 0) and Σ = I2×2 (i.e., standard Gaussian in d = 2 dimensions).
Pick the point x = (1, 1), one standard deviation away from the mean in each dimension. For any vector u ∈ R2,
we have

u⊤H(x)u = −p(x)
(
u⊤
[
0 −1
−1 0

]
u

)

where the matrix is indefinite. For instance, u = (1,−1) results in −2p(x) < 0 and u = (1, 1) results in 2p(x) > 0.
In the two-dimensional case, it is easy to visualize that this is a saddle point (convex along the direction of (1, 1),
concave along the orthogonal direction). Interestingly, for d = 1, the points x = µ±σ result in H(x) = 0 (“inflection
points”).

Lemma I.33. ∂
∂aΦ(

√
π
8 a)
∣∣
a=0

= σ′(0) = 1
4

Proof. We have σ′(a) = σ(a)(1− σ(a)) and σ(0) = 1
2 , so σ′(0) = 1

4 . On the other hand, we have

∂Φ(λa)

∂a
= λN (0, 1)(λa) ⇒ ∂Φ(λa)

∂a

∣∣∣∣
a=0

= λN (0, 1)(0) =
λ√
2π

Matching the two values yield λ =
√

π
8 .

Lemma I.34. For any λ, β ∈ R,

E
X∼N (µ,σ2)

[Φ (λX + β)] = Φ

(
λµ+ β√
1 + λ2σ2

)

Proof.

E
X∼N (µ,σ2)

[Φ (λX + β)] = E
Z∼N (0,1)

[Φ (λµ+ λσZ + β)]

= Pr
Z,Z′∼N (0,1)

(Z ′ < λµ+ λσZ + β)

= Pr
Z,Z′∼N (0,1)

(Z ′ − λσZ < λµ+ β)

= Pr
Z′′∼N (0,1+λ2σ2)

(Z ′′ < λµ+ β)

= Pr
Y∼N (0,1)

(
Y <

λµ+ β√
1 + λ2σ2

)

= Φ

(
λµ+ β√
1 + λ2σ2

)

Side note: proving a special case of this result (with β = 0) is an exercise (Exercise 4.26) in Bishop and Nasrabadi
(2006), who give a very complicated problem-specific solution calculating integrals (which can be found online). In
contrast, this proof is strikingly simple and well-known in the Stack Exchange community (e.g., here and here).
This is a reminder that often the “right” solution is simple, and even the best people can miss it.

Lemma I.35. In the GP classification model in Section 9.1.2, a Gaussian approximation of the posteriorN (µp,Σp) ≈
pF |R(·|r) is given by

µp = f⋆

Σp = (k(x)−1 +W (f⋆))−1

where f⋆ ∈ RN is the unique maximizer of the strictly concave log pFR(f, r) satisfying the stationary condition
f⋆ = k(x)(r − σ(f⋆)), and W (f) = diag (σ(f)⊙ (1− σ(f))).
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Proof. We apply the Laplace approximation (Appendix F) on

pFR(f, r) = N (0N , k(x))(f)×
(

N∏

i=1

σ((2ri − 1)fi)

)

to obtain pF |R(f |r) ≈ N (f⋆,−∇2τr(f
⋆)−1) where f⋆ = argmaxf log pF |R(f |r) = argmaxf log pFR(f, r) and

τr(f) = log pF |R(f |r) is the log posterior. With some calculation, we have8

∇τr(f) = r − σ(f)− k(x)−1f

∇2τr(f) = −W (f)− k(x)−1 ≺ 0

which shows τr is strictly concave and the unique optimum is obtained at a point f⋆ satisfying f⋆ = k(x)(r−σ(f⋆)).
This gives the statement.

Lemma I.36. With the Gaussian likelihood pR|F (r|f) = N (f,Σ)(r) in a sparse GP, we have

pFm|R(fm|r) = N
(
Λ(xm)−1k(xm)−1k(xm, x)Σ

−1r,Λ(xm)−1
)
(fm)

log pR(r) = logN (0N ,Σ+Q(xm))(r)− 1

2
tr
(
Σ−1 (k(x)−Q(xm))

)

where Λ(xm) = k(xm)−1 + k(xm)−1k(xm, x)Σ
−1k(x, xm)k(xm)−1 and Q(xm) = k(x, xm)k(xm)−1k(xm, x).

Proof. The ELBO (49) becomes

log pR(r) ≥ E
fm∼qFm|R(·|r)

f |fm∼N (k(x,xm)k(xm)−1fm,k(x)−Q(xm))

[logN (f,Σ)(r)]−KL(qFm|R(·|r), pFm
)

Using (3), we can eliminate the latent f in the ELBO:

E
f∼N (k(x,xm)k(xm)−1fm,k(x)−Q(xm))

[logN (f,Σ)(r)] = logN (k(x, xm)k(xm)−1fm,Σ)(r)−
1

2
tr
(
Σ−1 (k(x)−Q(xm))

)

Combining the KL term, we can then write the ELBO as

log pR(r) ≥ E
fm∼qFm|R(·|r)

[
log

GFmR(fm, r)

qFm|R(fm|r)

]
− 1

2
tr
(
Σ−1 (k(x)−Q(xm))

)
(119)

whereGFmR(fm, r) = pFm(fm)×N (k(x, xm)k(xm)−1fm,Σ)(r) has a Gaussian prior and likelihood, thus its posterior
is given by (11):

GFm|R(fm|r) = N
(
Λ−1k(xm)−1k(xm, x)Σ

−1r,Λ−1
)
(fm)

where Λ = k(xm)−1 + k(xm)−1k(xm, x)Σ
−1k(x, xm)k(xm)−1.9 Since GFmR(fm, r) ∝ GFm|R(fm|r) when r is held

fixed, for some Cr (constant in fm) we can write the ELBO as

log pR(r) ≥ −KL(qFm|R(·|r), GFm|R(·|r)) + Cr

8Here is the detail. Let g(r) = log pR|F (r|f) and h(f) = log pF (f). The first- and second-order partial derivatives of g : RN → R
are given by (letting o = 2r − 1N ∈ {±1}N for convenience)

g(f) =
N∑
i=1

logσ(oifi)
∂g(f)

∂fi
= oi(1− σ(oifi)) = ri − σ(fi)

∂2g(f)

∂fi∂fj
=

{
−σ(fi)(1− σ(fi)) if i = j

0 otherwise

Thus ∇g(f) = r − σ(f) and ∇2g(f) = −W (f) ≺ 0. Turning to h, we have

h(f) = −
1

2
f⊤k(x)−1f + constant ∇h(f) = −k(x)−1f

∇2h(f) = −k(x)−1 ≺ 0

Since τr(f) = g(f) + h(f) + Cr for some Cr constant in f , we have the statement.
9In the literature, an equivalent form is derived by convoluted algebraic manipulation. As a sanity check, we can convert to this

form as follows. Let S = k(xm) + k(xm, x)Σ−1k(x, xm) and note that S = k(xm)Λk(xm), thus Λ−1 = k(xm)S−1k(xm) and

Λ−1k(xm)−1k(xm, x)Σ−1r = k(xm)S−1k(xm, x)Σ−1r Λ−1 = k(xm)S−1k(xm)

The right-hand sides become the mean and covariance proposed in Titsias (2009) with Σ = σ2IN×N .
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This shows that the optimal approximate posterior is q⋆Fm|R = GFm|R. Since the search is not constrained, this
must be the true posterior, thus pFm|R = GFm|R. This shows the first statement. For the second statement, while
we should be able to plug q⋆Fm|R in the ELBO to derive the MLL, we get the result faster by noting that the first

term in (119) is actually a “mini-ELBO” associated with GFmR(fm, r) and qFm|R(fm|r). Therefore, it attains its
own maximum at logGR(r) where GR(r) = N (0N , Q(xm) + Σ)(r) is computed by (10). This shows

log pR(r) = logN (0N , Q(xm) + Σ)(r)− 1

2
tr
(
Σ−1 (k(x)−Q(xm))

)

J Individually Normal But Not Jointly Normal

This is an example from Wikipedia. Let X ∼ N (0, 1) and, independently, ϵ ∼ R where R denotes the Rademacher
distribution. Let Y = ϵX. By the symmetry of the distribution of X, we have Y ∼ N (0, 1). More formally,

Pr(Y ≤ x) = Pr(ϵ = 1)Pr(X ≤ x) + Pr(ϵ = −1)Pr(X ≥ −x)
= Pr(ϵ = 1)Pr(X ≤ x) + Pr(ϵ = −1)Pr(−X ≤ x)

=
1

2
Pr(X ≤ x) +

1

2
Pr(X ≤ x)

= Pr(X ≤ x)

Let Z = X + Y . Then Z = 0 with probability 1
2 and Z = 2X with probability 1

2 , so

Pr(Z = z) =
1

2

(
[[z = 0]] +N (0, 1)

(z
2

))
(120)

which is not a normal distribution. Then by definition 4, (X,Y ) ∈ R2 is not normally distributed. Thus X and Y
are not jointly normal, even though they are individually normal.

Mutual information. X and Y are uncorrelated. More formally,

Cov (X,Y ) = E [XY ]−E [X]E [Y ] = E
[
ϵX2

]
= E [ϵ]E

[
X2
]
= 0

Thus cor (X,Y ) = 0. But X and Y are not independent. Specifically, Pr(Y = x|X = x) = 1
2 is not equal to

Pr(Y = x) = N (0, 1)(x) for any x ∈ R. This illustrates the limitation of linear correlation. On the other hand, the
mutual information between X and Y is positive:

I(X,Y ) = H(X)−H(X|Y ) = H(X)− log(2) = log

√
πe

2
≈ 0.73
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