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1 Framework

Let pθ(x, z) = πθ(z)×κθ(x|z) denote a latent-variable generative model defining a joint distribution over an observed
image x ∈ Rd and an unobserved “latent image” z ∈ Rd. Given an image x and a choice of approximate posterior
q(z|x), a variational autoencoder (VAE) maximizes the evidence lower bound (ELBO) on the marginal log-likelihood

log

(∫
z

pθ(x, z)dz

)
≥ E

z∼q(·|x)
[log κθ(x|z)]−KL (q(·|x)||πθ)

A diffusion model is a VAE that assumes the latent is a sequence z1 . . . zT ∈ Rd for some fixed number of steps
(e.g., T = 1000). It first draws a completely random image zT ∈ Rd and repeatedly refines it through a backward
Markov chain, so-called backward (denoising) process. More formally,

x z1 z2 · · · zT−1 zT

pθ(x, z1 . . . zT ) =
←−p θ(zT |∅, T + 1)×←−p θ(zT−1|zT , T )× · · · ×←−p θ(z1|z2, 2)×←−p θ(x|z1, 1)

=

T+1∏
t=1

←−p θ(zt−1|zt, t)

where we have defined zT+1 = ∅ and z0 = x. A key assumption in diffusion models is that the approximate posterior

has a matching form (but conditioning on x): q(z1 . . . zT |x) =
∏T+1

t=2
←−q (zt−1|x, zt, t). With this, the ELBO is

max
θ

E
z1...zT∼q(·|x)

[log←−p θ(x|z1, 1)]︸ ︷︷ ︸
reconstruction term

− E
z1...zT∼q(·|x)

T+1∑
t=2

KL (←−q (·|x, zt, t)||←−p θ(·|zt, t))︸ ︷︷ ︸
stepwise KL term

 (1)

1.1 Gaussian Paramaterization

A natural definition of the model is ←−p θ(·|∅, T + 1) = N (0d, Id×d) and for t = T . . . 1

←−p θ(zt−1|zt, t) = N (←−µ θ(zt, t), σ
2
t Id×d)(zt−1) (2)

where σ2
T > . . . > σ2

1 > 0 is some fixed decreasing variance schedule. Here, ←−µ θ(z, t) ∈ Rd is a mean regressor. The
reconstruction term becomes

E
z1...zT∼q(·|x)

[log←−p θ(x|z1, 1)] = E
z1...zT∼q(·|x)

[
− 1

2σ2
1

||x−←−µ θ(z1, 1)||2
]
+ C

for some constant C. To match (2), we want an approximate posterior of the form: for t = T . . . 2

←−q (zt−1|x, zt, t) = N (µ̃t, σ̃
2
t Id×d)(zt−1) (3)

where µ̃t ∈ Rd and σ̃2
t > 0 are some functions of x and zt (thus random variables themselves). The KL term in (1)

is, for t = 2 . . . T (ignoring t = T + 1 which is constant)

KL (←−q (·|x, zt, t)||←−p θ(·|zt, t)) =
1

2σ2
t

||µ̃t −←−µ θ(zt, t)||2 + C ′



for some constant C ′. Note that σ̃2
t is ignored. Defining µ̃1 = x, we see that (1) is equivalent to

min
θ

E
z1...zT∼q(·|x)

[
T∑

t=1

1

2σ2
t

||µ̃t −←−µ θ(zt, t)||2
]

(4)

This is a weighted regression problem ←−µ θ(zt, t) ≈ µ̃t. Since σ2
t is decreasing, the prediction at small t is counted

(substantially) more than at large t. To avoid sampling an entire sequence, we assume that the marginal distribution

q̄(z|x, t) =
∫
z1...zT : zt=z

q(z1 . . . zT |x) d(z1 . . . zT ) (5)

is easy to sample from (hint: Gaussian). Then (4) is equivalent to

min
θ

E
t∼Unif{1...T}, zt∼q̄(·|x,t)

[
1

2σ2
t

||µ̃t −←−µ θ(zt, t)||2
]

(6)

In summary, assuming the Gaussian Markov backward process ←−p θ(·|zt, t) = N (←−µ θ(zt, t), σ
2
t Id×d), if we design an

approximate posterior q(z1 . . . zT |x) such that

1. Its backward form is also Gaussian Markov: ←−q (·|x, zt, t) = N (µ̃t, σ̃
2
t Id×d)

2. The stepwise marginal distribution q̄(·|x, t) is easy to sample from (e.g., Gaussian)

then optimizing the ELBO (1) is equivalent to optimizing the samplable weighted regression problem (6).

2 DDPM

A denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) satisfies Condition 1 and 2 by defining the
approximate posterior to be a forward Gaussian Markov chain, so-called forward (noising) process. More
formally,

x z1 z2 · · · zT−1 zT

q(z1 . . . zT |x) =
T∏

t=1

N (
√
1− βtzt−1, βtId×d)(zt) (7)

where 0 < β1 < · · · < βT < 1 is some fixed increasing variance schedule (recall z0 = x).

2.1 Marginals

Lemma 2.1. Under (7), the marginal probability (5) is

q̄(z|x, t) = N (
√
αtx, (1− αt) Id×d)(z) (8)

where αt =
∏t

s=1(1− βs).

Proof. We first note that the forward process (7) implies

q̄(z|x, t) = E
z1...zt−1∼q(·|x)

[
N (
√

1− βtzt−1, βtId×d)(z)
]

The base case z1 ∼ N (
√
1− β1z0, β1Id×d) = N (

√
α1x, (1− α1)Id×d) holds by premise. By the reparameterization

trick, for t > 1,

zt =
√
1− βtzt−1 +

√
βtϵt (7)

=
√
1− βt

(√
αt−1x+

√
1− αt−1ϵt−1

)
+
√
βtϵt (inductive step)

=
√
αtx+

√
(1− βt)(1− αt−1)ϵt−1 +

√
βtϵt



where ϵt−1, ϵt ∼ N (0d, Id×d). The last two terms are independently normally distributed with mean 0d and covari-
ances (1− βt)(1− αt−1)Id×d and βtId×d. Thus their sum is distributed as N (0d, ν

2Id×d) where

ν2 = (1− βt)(1− αt−1) + βt

= 1− (1− βt)αt−1
= 1− αt (9)

This shows that zt ∼ N (
√
αtx, (1− αt)Id×d).

Note that αt =
∏t

s=1(1 − βs) = (1 − βt)αt−1 is mapped to βt by 1 − βt = αt

αt−1
, which is used frequently in

derivations. The quantity 1− αt is a variance schedule for q̄(·|x, t) = N (
√
αtx, (1− αt) Id×d), increasing since

0 < β1 < · · · < βT < 1 ⇒ 1 = α0 > α1 > · · · > αT > 0

0 = (1− α0) < (1− α1) < · · · < (1− αT ) < 1

where we have defined α0 = 1. The marginals are “consistent at the extremes” in the following sense. At t = 0, the
marginal becomes a point-mass density on x,

q̄(z|x, 0) = N (x, 0d×d)(z) =

{
1 if z = x

0 otherwise

As t→∞, the marginal converges to a standard Gaussian,

lim
t→∞

q̄(·|x, t) = lim
t→∞

N (
√
αtx, (1− αt) Id×d) = N (0d, Id×d)

2.2 Backward Form

A highlight of the Gaussian parameterization is the linear-Gaussian Bayes’ rule:

µ ∼ N (µ0, γ0Id×d) z ∼ N
(
cµ0 + b, (γ + c2γ0)Id×d

)
z|µ ∼ N (cµ+ b, γId×d) ⇒ µ|z ∼ N

((
γ

γ + c2γ0

)
µ0 +

(
cγ0

γ + c2γ0

)
(z − b),

(
γ0γ

γ + c2γ0

)
Id×d

)
(10)

Using the fact that the marginals (8) are Gaussian and the forward noising process (7) is linear-Gaussian,

zt−1|x ∼ N (
√
αt−1x, (1− αt−1) Id×d)

zt|x, zt−1 ∼ N (
√

1− βtzt−1, βtId×d) ⇒ zt−1|x, zt ∼ N (µ̃t(x, zt), σ̃
2
t Id×d)︸ ︷︷ ︸

←−q (·|x,zt,t)

(11)

where

µ̃t(x, zt) =
βt
√
αt−1

1− αt
x+

√
1− βt(1− αt−1)

1− αt
zt (12)

σ̃2
t =

βt(1− αt−1)
1− αt

(13)

2.3 Noise Predictive Formulation

Plugging (8) and (12) in the ELBO (6), we have

min
θ

E
t∼Unif{1...T}, ϵt∼N (0d,Id×d):

zt=
√
αtx+

√
1−αtϵt

[
1

2σ2
t

||µ̃t(x, zt)−←−µ θ(zt, t)||2
]

(14)

To avoid directly modeling µ̃t(x, zt) ∈ Rd which is high-variance for random x, note that zt =
√
αtx+

√
1− αtϵt or

equivalently

x =
zt −

√
1− αtϵt√
αt

(15)

http://karlstratos.com/notes/gaussian.pdf


where ϵt ∼ N (0d, Id×d). This allows us to express µ̃t(x, zt) a function of only zt and ϵt. While not necessary, it can
be simplified as

µ̃t(x, zt) =
βt
√
αt−1

1− αt

(√
1

αt
zt −

√
1− αt

αt
ϵt

)
+

√
1− βt(1− αt−1)

1− αt
zt

=

√
1

1− βt

(
βt

1− αt
zt −

βt√
1− αt

ϵt +
(1− βt)(1− αt−1)

1− αt
zt

)
=

√
1

1− βt

(
zt −

βt√
1− αt

ϵt

)
(16)

where the second equality uses αt−1

αt
= 1

1−βt
and the final equality makes the same observation in (9). We now

define the mean regressor ←−µ θ(zt, t) in matching form:

←−µ θ(zt, t) =

√
1

1− βt

(
zt −

βt√
1− αt

ϵθ(zt, t)

)
(17)

where ϵθ : Rd ×N→ Rd is a noise predictor (e.g., U-Net with sinusoidal step embeddings). Plugging (17) and (16)
in (14), we have

min
θ

E
t∼Unif{1...T}, ϵt∼N (0d,Id×d):

zt=
√
αtx+

√
1−αtϵt

[
λDDPM
t ||ϵt − ϵθ(zt, t)||2

]
(18)

for the stepwise weights λDDPM
t =

β2
t

2σ2
t (1−βt)(1−αt)

, again larger for small t. Ho et al. (2020) overwrite λDDPM
t ← 1.

This “surrogate objective” is no longer the true ELBO and corresponds to upweighting large t (i.e., focus more on
the noisy phase).1

2.4 Generation

Once the noise predictor ϵθ is trained, we can sample x, z1 . . . zT ∼ pθ by the backward process (2) as

1. Sample zT ∼ N (0d, Id×d).

2. For t = T . . . 1, sample zt−1 ∼ N (
√

1
1−βt

(
zt − βt√

1−αt
ϵθ(zt, t)

)
, σ2

t Id×d) (see (17)).

3. Return x = z0, z1 . . . zT .

Note that the model variance σ2
t does not affect training with the surrogate objective, but still affects generation.

3 DDIM

It is tempting to speed up the stepwise generation 2 by “skipping” some steps. But this requires marginalizing over
the skipped steps. Denoising diffusion implicit models (DDIMs) (Song et al., 2021) get around this difficulty by

1. Defining the approximate posterior to be a Markov backward chain over any subsequence of the latent images

qτ (zτ1 . . . zτm |x) =
m+1∏
l=2

←−q (zτl−1
|x, zτl , τl, τl−1) (19)

where τ = (τ1 . . . τm) satisfies τ1 < · · · < τm = T and τm+1 = ∅ is a dummy step

2. Defining the model to match the approximate posterior, except for replacing x with a prediction

pθ(x = zτ0 , zτ1 . . . zτm) =

m+1∏
l=1

←−q
(
zτl−1

|fθ(zτl , τl), zτl , τl, τl−1
)

(20)

A neat technical trick is that we can define (19) to have the same marginals in (8). Since the ELBO (6) only
depends on samples from the marginals and the means of (20) and (19) (matched by construction), DDIMs with
the full sequence τ = (1 . . . T ) will have the same surrogate objective as DDPMs.

1This will also hold if the model ϵθ(zt, t) is not shared across time steps (not the case in practice).

http://karlstratos.com/notes/vision.pdf


3.1 Approximate Posterior

Lemma 3.1. Let α, σ ∈ RT
≥0 and τ = (τ1 . . . τm) a subsequence of (1 . . . T ) such that τ1 < · · · < τm = T . Let

τm+1 = ∅ denote a dummy step. Given x ∈ Rd, define

qα,σ,τ (zτ1 . . . zτm |x) =
m+1∏
l=2

←−q α,σ(zτl−1
|x, zτl , τl, τl−1) (21)

where ←−q α,σ(·|x, z∅,∅, τm) = N (
√
ατmx, (1− ατm)Id×d) and for l = m. . . 2,

←−q α,σ(·|x, zτl , τl, τl−1) = N
(
√
ατl−1

x+

√
1− ατl−1

− σ2
τl

1− ατl

(
zτl −

√
ατlx

)
, σ2

τl
Id×d

)
(22)

Then (22) is the only distribution of the linear-Gaussian form N (czτl + b, σ2
τl
Id×d) for some c ∈ R and b ∈ Rd such

that the marginals of (21) (as defined in (5)) satisfy q̄(·|x, τl) = N (
√
ατlx, (1− ατl) Id×d) for l = 1 . . .m.

Proof. At l = m, the statement is true by definition. We now give a constructive proof by induction. Let t = τl
and s = τl−1 for l ≤ m. Using (i) the inductive step, (ii) the Markov assumption in (21), and (iii) Bayes rule’ (10),

zt|x ∼ N (
√
αtx, (1− αt) Id×d) ⇒ zs|x ∼ N

(
c
√
αtx+ b, (σ2

t + c2(1− αt))Id×d
)

zs|x, zt ∼ N (czt + b, σ2
t Id×d) (23)

We want c
√
αtx+ b =

√
αsx and σ2

t + c2(1−αt) = 1−αs. Solving for c in the latter and then b in the former gives

c =

√
1− αs − σ2

t

1− αt
b =
√
αsx−

√
1− αs − σ2

t

1− αt

√
αtx

We conclude that to have the marginal q̄(z|x, s) = N (
√
αsx, (1− αs) Id×d), the distribution zs|x, zt ∼ N (czt +

b, σ2
t Id×d) must have the form

zs|x, zt ∼ N

√αsx+

√
1− αs − σ2

t

1− αt
(zt −

√
αtx) , σ

2
t Id×d



Corollary 3.2. The DDPM approximate posterior (7), with the associated β, α ∈ RT
≥0, is a special case of the

DDIM approximate posterior (21) using the full sequence τ = (1 . . . T ) and the variance σ2
t = βt(1−αt−1)

1−αt
.

Proof. The DDPM has the Markov backward form N (czt + b, βt(1−αt−1)
1−αt

Id×d) (11) with N (
√
αtx, (1− αt) Id×d) as

the marginals. By Lemma 3.1, this is the same distribution as (22) using τ = (1 . . . T ) and σ2
t = βt(1−αt−1)

1−αt
. It also

implies that the DDIM now has the same Markov forward noising process (7) since they have the same marginals
and likelihoods.

3.2 Model

Lemma 3.3. Let α, σ ∈ RT
≥0 and τ = (τ0, τ1 . . . τm) a subsequence of (0, 1 . . . T ) such that τ0 = 0 < τ1 < · · · <

τm = T . Pick fθ : Rd × N→ Rd and define

pα,σ,τ,θ(x = zτ0 , zτ1 . . . zτm) = N (0d, Id×d)(zT )×
m∏
l=1

←−q α,σ(·|fθ(zτl , τl), zτl , τl, τl−1) (24)

where←−q α,σ is defined in (22). If τ = (0, 1 . . . T ) and fθ(z, t) =
z−√1−αtϵθ(z,t)√

αt
for some ϵθ : Rd×N→ Rd, the ELBO

(6) using the approximate posterior in Lemma 3.1 is equivalent to

min
θ

E
t∼Unif{1...T}, ϵt∼N (0d,Id×d):

zt=
√
αtx+

√
1−αtϵt

[
λDDIM
t ||ϵt − ϵθ(zt, t)||2

]
(25)

for the stepwise weights λDDIM
t =

βt+(1−β1)σ
2
t

2σ2
t (1−βt)

.



Proof. In the ELBO (6), the mean of the backward Markov approximate posterior is µ̃t = (
√
αt−1 − c

√
αt)x+ czt

and the mean of the model is←−µ θ(zt, t) = (
√
αt−1−c

√
αt)fθ(zt, t)+czt where c =

√
(1− αt−1 − σ2

t )/(1− αt). Thus
it becomes

min
θ

E
t∼Unif{1...T}, zt∼q̄(·|x,t)

[
(
√
αt−1 − c

√
αt)

2

2σ2
t

||x− fθ(zt, t)||2
]

Using the fact that q̄(·|x, t) = N (
√
αtx, (1− αt) Id×d) (Lemma 3.1), the Gaussian parameterization trick (15), and

the parameterization fθ(z, t) =
z−√1−αtϵθ(z,t)√

αt
, it is equivalent to

min
θ

E
t∼Unif{1...T}, ϵt∼N (0d,Id×d):

zt=
√
αtx+

√
1−αtϵt

[
(
√
αt−1 − c

√
αt)

2 1−αt

αt

2σ2
t

||ϵt − ϵθ(zt, t)||2
]

Simplifying the coefficient gives the statement.2

Training. The ELBO under DDIMs (25) and the ELBO under DDPMs (18) are the same except for slightly
different stepwise coefficients (λDDIM

t vs λDDPM
t ). In particular, under the surrogate objective that overwrites the

coefficients to be 1, training a DDIM over the full sequence τ = (0, 1 . . . T ) using any α, σ ∈ RT
≥0 is equivalent to

training a DDPM using those α1 . . . αT .

3.3 Generation

We take a trained DDPM noise predictor ϵθ associated with β, α ∈ RT
≥0. We choose a subsequence τ = (τ0, τ1 . . . τm)

of (0, 1 . . . T ) where τ0 = 0 < τ1 < · · · < τm = T and a variance schedule σ2 ∈ RT
≥0. We then sample x, zτ1 . . . zτm ∼

pα,σ,τ,θ by the backward process (24) as

1. Sample zT ∼ N (0d, Id×d).

2. For l = m. . . 1, sample zτl−1
∼ N

(
√
ατl−1

(
zτl−
√

1−ατl
ϵθ(zτl ,τl)√

ατl

)
+
√

1− ατl−1
− σ2

τl
ϵθ(zτl , τl), σ

2
τl
Id×d

)
.

3. Return x = zτ0 , zτ1 . . . zτm .

Like DDPMs, the variance schedule σ2 only affects generation. If we choose τ = (0, 1 . . . T ) and σ2
t = βt(1−αt−1)

1−αt
,

by Corollary 3.2 we recover the DDPM sampling (Section 2.4).
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2√αt−1 − c
√
αt =

√
αt−1(1−αt)−(1−αt−1−σ2

t )αt

1−αt
=

√
αt−1−αt(1−σ2

t )

1−αt
⇒ numerator = 1

1−βt
− 1 + σ2

t ⇒ coeff =
βt+(1−βt)σ

2
t

2σ2
t (1−βt)
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