Conditional Random Fields

1 Introduction

Conditional random fields (CRFs) define a distribution over target structures y given
an input structure x, using a global feature function ® and a weight vector w:

exp(w - ®(z,y))
 exp(w - 5z, 1) %

pylz) = 5

CRFs are powerful because ® can consider an entire target structure y. We will focus
on the case where the structure is a sequence: x is a sequence of tokens z ...z, and
y is a sequence of labels y; ...y, where label y; € Y corresponds to token x; € X. A
key assumption in CRF's to keep learning and decoding efficient is the following.

Assumption 1.1. The global feature function ® is a sum of local functions ¢.
Throughout, we will assume that ®(x,y) € R? has the form

(I)(w7y) = Z(ﬁ(w,iayiflayi) (2)
i
where ¢(x,4,yi—1,Y;) € R is the local representation of y at position i.

2 Decoding

Suppose that we know the weight vector w. Given an input sequence x, how do we
find a target sequence y* such that p(y*|x) > p(y|z) for all possible y? Rather than
calculating Eq. (1) for exponentially many candidates y € V", we make the following
observation based on Assumption 1.1.

y* = argmax p(yl|x)
Yy

= arg max exp(w - &(z,y))

y Zyl eXP(’w : q)("IJ? y/))
= arg max exp(w : CI)(:IL y))

y
=argmax w- d(x,y)

]

= arg max Zw ~o(x, 1, Yi—1,Yi)
Y i

Note that if ® is not decomposed, we cannot avoid explicitly enumerating y. Thanks
to the decomposition, however, a Viterbi algorithm can be used to find y* such that

y* = arg maxZw (X, 0, Yio1,Yi)
b4 i

In the algorithm, table 7 is used to record for each position ¢ and state y

i
7-[-[17:1/] = yrlna:ZE Zw . ¢(w7j> yjfhyj)
Yi=Y j=1

Then y* can be retrieved from max, 7[n,y] using a backtracker x.

Viterbi
Input: input sequence x of length n, weight vector w
Output: optimal target sequence y*

e Forallye),

7[1,y] + w- ¢(x,1,y0,y) where yg is a start symbol

e Fori=2...n,forally €),
7li,y] « maxnli — 1yl +w- d(z,4,y',y)
y/

k[i,y] « argmax i — 1,y] + w - ¢(x,4,9,y)
y/

e Return y* =y ...y, where
Yy +— argmax n, y|

y
yi < Kli,y;q) fori=n—1...1

3 Learning

We calculate w that maximizes the regularized log likelihood of the training data
{(x1, yq)}?:l with some parameter A > 0:

Q
A
L(w) =) logp(y’|=?) — 3]|
q=1

L(w) is a convex function in w, so we can resort to some hill climbing method to find
an optimal weight vector w* such that

w* = argmax L(w)
w

Below is a gradient-based algorithm in its roughest form, but in practice one will have
to be more clever.

Gradient Ascent
Input: training sequences {(x4,y?)}% |, feature function ® : X x Y — R?

Output: weight vector w* € RY close to optimal

=1

e w+ 20

e Until convergence,

— For k =1...d, calculate the gradient A\ + 60(and set

Wy = Wy + a X N\
where @ > 0 is some learning rate.

e Return w.

We need to be able to compute the gradient of the function L(w) with respect to each
component wy. Since CRF's are just log-linear models, we have the well-known form

8wk Zfbk (x9,y Z Z (ylx?)Pr(x?, y) — Awy,

g=1lyeym

The first and last terms are easy to compute. The middle term, which involves a sum
over exponentially many sequences y € ", can be again computed efficiently by the
following observation based on Assumption 1.1. For any x € X",

> pyle)@r(z,y) = Y pylz) Y dr(@,i g1,

yey” yey” i=1

Z Z Z p(yle)dn(x, 4, yi—1,Yi)

i=1 a,bey yey™:

Yyi—1=a,y;=b
n
:Z > dwlwiiab) > pyle)
i=1 a,bcy yey™:
Yi—1=0a,y;=b

Zn: Z (x,4,a,b)g(i,a,blx)
i=1 a,bey

where we define
gli,a,blz) = Y plylz)
yey™:
Yi—1=a,y;=b
We can compute g(i,a,blx) for all i € [n] and a,b € Y efficiently using a forward-
backward algorithm. Thus we have shown that the gradient can be computed effi-
ciently for training.

3.1 Forward-Backward

Given & € X", we compute for every position i € [n] and label y € Y

a[i7y]: Z Hexp(w'¢(m,j,yj_1,yj))

Yi---Yit g
Yi=y

B[Z7y]: Z H exp(w'¢(m7j7yj—1;yj))

Yi---Yn' j=i+1
Yi=y

Then it can be verified that

gliyablz) = Y plylz)
yey™:
Yi—1=a,y;=b

_ ali — 1,a] x exp(w - p(x,i,a,b)) x B[i,b]
Zyey a[n7y]

ForwardBackward
Input: input sequence x of length n
Output: ¢(i,a,blz) for all i € [n] and a,b € Y

e Forall y e),

all,y] + exp(w - ¢(x, 1, yo,y)) where yp is a start symbol

Fori=2...n,forally e),

ali,y] « Y ali—1,y] x exp(w - ¢(, i,y y))
y' ey

For all y €),
Bln,y| « 1

Fori=n—-1...1,forally €),

Bli,yl + Y exp(w - ¢(m,i+ 1,y,9)) x Bli +1,9/]
y'eY
Return g(i, a, b|x) where

ali — 1,a] X exp(w - ¢(x,i,a,b)) x B[i,b]
2 yey aln,yl

g(i,a,blx) =

