
Conditional Random Fields

1 Introduction

Conditional random fields (CRFs) define a distribution over target structures y given

an input structure x, using a global feature function � and a weight vector w:

p(y|x) = exp(w · �(x,y))P
y0 exp(w · �(x,y0

))

(1)

CRFs are powerful because � can consider an entire target structure y. We will focus

on the case where the structure is a sequence: x is a sequence of tokens x1 . . . xn and

y is a sequence of labels y1 . . . yn where label yi 2 Y corresponds to token xi 2 X . A

key assumption in CRFs to keep learning and decoding e�cient is the following.

Assumption 1.1. The global feature function � is a sum of local functions �.

Throughout, we will assume that �(x,y) 2 Rd
has the form

�(x,y) =

X

i

�(x, i, yi�1, yi) (2)

where �(x, i, yi�1, yi) 2 Rd
is the local representation of y at position i.

2 Decoding

Suppose that we know the weight vector w. Given an input sequence x, how do we

find a target sequence y

⇤
such that p(y

⇤|x) � p(y|x) for all possible y? Rather than

calculating Eq. (1) for exponentially many candidates y 2 Yn
, we make the following

observation based on Assumption 1.1.

y

⇤
= argmax

y
p(y|x)

= argmax

y

exp(w · �(x,y))P
y0 exp(w · �(x,y0

))

= argmax

y
exp(w · �(x,y))

= argmax

y
w · �(x,y)

= argmax

y

X

i

w · �(x, i, yi�1, yi)
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Note that if � is not decomposed, we cannot avoid explicitly enumerating y. Thanks

to the decomposition, however, a Viterbi algorithm can be used to find y

⇤
such that

y

⇤
= argmax

y

X

i

w · �(x, i, yi�1, yi)

In the algorithm, table ⇡ is used to record for each position i and state y

⇡[i, y] = max

y1...yi:
yi=y

iX

j=1

w · �(x, j, yj�1, yj)

Then y

⇤
can be retrieved from maxy ⇡[n, y] using a backtracker .

Viterbi
Input: input sequence x of length n, weight vector w

Output: optimal target sequence y

⇤

• For all y 2 Y,

⇡[1, y] w · �(x, 1, y0, y) where y0 is a start symbol

• For i = 2 . . . n, for all y 2 Y,

⇡[i, y] max

y0
⇡[i� 1, y

0
] +w · �(x, i, y0, y)

[i, y] argmax

y0
⇡[i� 1, y

0
] +w · �(x, i, y0, y)

• Return y

⇤
= y

⇤
1 . . . y

⇤
n where

y

⇤
n  argmax

y
⇡[n, y]

y

⇤
i  [i, y

⇤
i+1] for i = n� 1 . . . 1

3 Learning

We calculate w that maximizes the regularized log likelihood of the training data

{(xq
,y

q
)}Qq=1 with some parameter � > 0:

L(w) =

QX

q=1

log p(y

q|xq
)� �

2

||w||2

L(w) is a convex function in w, so we can resort to some hill climbing method to find

an optimal weight vector w

⇤
such that

w

⇤
= argmax

w
L(w)

Below is a gradient-based algorithm in its roughest form, but in practice one will have

to be more clever.
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GradientAscent
Input: training sequences {(xq

,y

q
)}Qq=1, feature function � : X ⇥Y ! Rd

Output: weight vector w⇤ 2 Rd
close to optimal

• w  0

• Until convergence,

– For k = 1 . . . d, calculate the gradient 4k  @L(w)
@wk

and set

wk = wk + ↵⇥4k

where ↵ > 0 is some learning rate.

• Return w.

We need to be able to compute the gradient of the function L(w) with respect to each

component wk. Since CRFs are just log-linear models, we have the well-known form

@L(w)

@wk
=

QX

q=1

�k(x
q
,y

q
)�

QX

q=1

X

y2Yn

p(y|xq
)�k(x

q
,y)� �wk

The first and last terms are easy to compute. The middle term, which involves a sum

over exponentially many sequences y 2 Yn
, can be again computed e�ciently by the

following observation based on Assumption 1.1. For any x 2 Xn
,

X

y2Yn

p(y|x)�k(x,y) =

X

y2Yn

p(y|x)
nX

i=1

�k(x, i, yi�1, yi)

=

nX

i=1

X

a,b2Y

X

y2Yn:
yi�1=a,yi=b

p(y|x)�k(x, i, yi�1, yi)

=

nX

i=1

X

a,b2Y
�k(x, i, a, b)

X

y2Yn:
yi�1=a,yi=b

p(y|x)

=

nX

i=1

X

a,b2Y
�k(x, i, a, b)g(i, a, b|x)

where we define

g(i, a, b|x) =
X

y2Yn:
yi�1=a,yi=b

p(y|x)

We can compute g(i, a, b|x) for all i 2 [n] and a, b 2 Y e�ciently using a forward-

backward algorithm. Thus we have shown that the gradient can be computed e�-

ciently for training.
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3.1 Forward-Backward

Given x 2 Xn
, we compute for every position i 2 [n] and label y 2 Y

↵[i, y] =

X

y1...yi:
yi=y

iY

j=1

exp(w · �(x, j, yj�1, yj))

�[i, y] =

X

yi...yn:
yi=y

nY

j=i+1

exp(w · �(x, j, yj�1, yj))

Then it can be verified that

g(i, a, b|x) =
X

y2Yn:
yi�1=a,yi=b

p(y|x)

=

↵[i� 1, a]⇥ exp(w · �(x, i, a, b))⇥ �[i, b]P
y2Y ↵[n, y]

ForwardBackward
Input: input sequence x of length n

Output: g(i, a, b|x) for all i 2 [n] and a, b 2 Y

• For all y 2 Y,

↵[1, y] exp(w · �(x, 1, y0, y)) where y0 is a start symbol

• For i = 2 . . . n, for all y 2 Y,

↵[i, y] 
X

y02Y
↵[i� 1, y

0
]⇥ exp(w · �(x, i, y0, y))

• For all y 2 Y,

�[n, y] 1

• For i = n� 1 . . . 1, for all y 2 Y,

�[i, y] 
X

y02Y
exp(w · �(x, i+ 1, y, y

0
))⇥ �[i+ 1, y

0
]

• Return g(i, a, b|x) where

g(i, a, b|x) = ↵[i� 1, a]⇥ exp(w · �(x, i, a, b))⇥ �[i, b]P
y2Y ↵[n, y]
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