Conditional Random Fields

1 Introduction

Conditional random fields (CRFs) define a distribution over target structures \boldsymbol{y} given an input structure \boldsymbol{x} , using a global feature function Φ and a weight vector \boldsymbol{w} :

$$p(\boldsymbol{y}|\boldsymbol{x}) = \frac{\exp(\boldsymbol{w} \cdot \Phi(\boldsymbol{x}, \boldsymbol{y}))}{\sum_{\boldsymbol{y}'} \exp(\boldsymbol{w} \cdot \Phi(\boldsymbol{x}, \boldsymbol{y}'))}$$
(1)

CRFs are powerful because Φ can consider an *entire* target structure \boldsymbol{y} . We will focus on the case where the structure is a sequence: \boldsymbol{x} is a sequence of tokens $x_1 \dots x_n$ and \boldsymbol{y} is a sequence of labels $y_1 \dots y_n$ where label $y_i \in \mathcal{Y}$ corresponds to token $x_i \in \mathcal{X}$. A key assumption in CRFs to keep learning and decoding efficient is the following.

Assumption 1.1. The global feature function Φ is a sum of local functions ϕ . Throughout, we will assume that $\Phi(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^d$ has the form

$$\Phi(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i} \phi(\boldsymbol{x}, i, y_{i-1}, y_i)$$
(2)

where $\phi(\mathbf{x}, i, y_{i-1}, y_i) \in \mathbb{R}^d$ is the local representation of \mathbf{y} at position *i*.

2 Decoding

Suppose that we know the weight vector \boldsymbol{w} . Given an input sequence \boldsymbol{x} , how do we find a target sequence \boldsymbol{y}^* such that $p(\boldsymbol{y}^*|\boldsymbol{x}) \geq p(\boldsymbol{y}|\boldsymbol{x})$ for all possible \boldsymbol{y} ? Rather than calculating Eq. (1) for exponentially many candidates $\boldsymbol{y} \in \mathcal{Y}^n$, we make the following observation based on Assumption 1.1.

$$y^* = \underset{y}{\operatorname{arg\,max}} p(y|x)$$

$$= \underset{y}{\operatorname{arg\,max}} \frac{\exp(w \cdot \Phi(x, y))}{\sum_{y'} \exp(w \cdot \Phi(x, y'))}$$

$$= \underset{y}{\operatorname{arg\,max}} \exp(w \cdot \Phi(x, y))$$

$$= \underset{y}{\operatorname{arg\,max}} w \cdot \Phi(x, y)$$

$$= \underset{y}{\operatorname{arg\,max}} \sum_{i} w \cdot \phi(x, i, y_{i-1}, y_i)$$

Note that if Φ is not decomposed, we cannot avoid explicitly enumerating y. Thanks to the decomposition, however, a Viterbi algorithm can be used to find y^* such that

$$oldsymbol{y}^* = rg\max_{oldsymbol{y}} \sum_i oldsymbol{w} \cdot \phi(oldsymbol{x}, i, y_{i-1}, y_i)$$

In the algorithm, table π is used to record for each position *i* and state *y*

$$\pi[i,y] = \max_{\substack{y_1\dots y_i:\\y_i=y}} \sum_{j=1}^{i} \boldsymbol{w} \cdot \phi(\boldsymbol{x},j,y_{j-1},y_j)$$

Then y^* can be retrieved from $\max_y \pi[n, y]$ using a backtracker κ .

Viterbi
Input : input sequence \boldsymbol{x} of length n , weight vector \boldsymbol{w}
Output : optimal target sequence y^*
• For all $y \in \mathcal{Y}$,
$\pi[1, y] \leftarrow \boldsymbol{w} \cdot \phi(\boldsymbol{x}, 1, y_0, y)$ where y_0 is a start symbol
• For $i = 2 \dots n$, for all $y \in \mathcal{Y}$,
$\pi[i,y] \leftarrow \max_{y'} \pi[i-1,y'] + oldsymbol{w} \cdot \phi(oldsymbol{x},i,y',y)$
$\kappa[i,y] \leftarrow rgmax_{y'} \pi[i-1,y'] + oldsymbol{w} \cdot \phi(oldsymbol{x},i,y',y)$
• Return $\boldsymbol{y}^* = y_1^* \dots y_n^*$ where
$y_n^* \leftarrow rg\max_y \pi[n,y]$
$y_i^* \leftarrow \kappa[i, y_{i+1}^*]$ for $i = n - 1 \dots 1$

3 Learning

We calculate \boldsymbol{w} that maximizes the regularized log likelihood of the training data $\{(\boldsymbol{x}^q, \boldsymbol{y}^q)\}_{q=1}^Q$ with some parameter $\lambda > 0$:

$$L(oldsymbol{w}) = \sum_{q=1}^{Q} \log p(oldsymbol{y}^q | oldsymbol{x}^q) - rac{\lambda}{2} \left| |oldsymbol{w}|
ight|^2$$

L(w) is a convex function in w, so we can resort to some hill climbing method to find an optimal weight vector w^* such that

$$\boldsymbol{w}^* = \operatorname*{arg\,max}_{\boldsymbol{w}} L(\boldsymbol{w})$$

Below is a gradient-based algorithm in its roughest form, but in practice one will have to be more clever.

GradientAscent Input: training sequences $\{(x^q, y^q)\}_{q=1}^Q$, feature function $\Phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$ Output: weight vector $w^* \in \mathbb{R}^d$ close to optimal • $w \leftarrow 0$ • Until convergence, - For $k = 1 \dots d$, calculate the gradient $\triangle_k \leftarrow \frac{\partial L(w)}{\partial w_k}$ and set $w_k = w_k + \alpha \times \triangle_k$

where $\alpha > 0$ is some learning rate.

• Return \boldsymbol{w} .

We need to be able to compute the gradient of the function $L(\boldsymbol{w})$ with respect to each component w_k . Since CRFs are just log-linear models, we have the well-known form

$$\frac{\partial L(\boldsymbol{w})}{\partial w_k} = \sum_{q=1}^{Q} \Phi_k(\boldsymbol{x}^q, \boldsymbol{y}^q) - \sum_{q=1}^{Q} \sum_{\boldsymbol{y} \in \mathcal{Y}^n} p(\boldsymbol{y} | \boldsymbol{x}^q) \Phi_k(\boldsymbol{x}^q, \boldsymbol{y}) - \lambda w_k$$

The first and last terms are easy to compute. The middle term, which involves a sum over exponentially many sequences $\boldsymbol{y} \in \mathcal{Y}^n$, can be again computed efficiently by the following observation based on Assumption 1.1. For any $\boldsymbol{x} \in \mathcal{X}^n$,

$$\sum_{\boldsymbol{y}\in\mathcal{Y}^n} p(\boldsymbol{y}|\boldsymbol{x}) \Phi_k(\boldsymbol{x}, \boldsymbol{y}) = \sum_{\boldsymbol{y}\in\mathcal{Y}^n} p(\boldsymbol{y}|\boldsymbol{x}) \sum_{i=1}^n \phi_k(\boldsymbol{x}, i, y_{i-1}, y_i)$$
$$= \sum_{i=1}^n \sum_{a, b\in\mathcal{Y}} \sum_{\substack{\boldsymbol{y}\in\mathcal{Y}^n:\\y_{i-1}=a, y_i=b}} p(\boldsymbol{y}|\boldsymbol{x}) \phi_k(\boldsymbol{x}, i, y_{i-1}, y_i)$$
$$= \sum_{i=1}^n \sum_{a, b\in\mathcal{Y}} \phi_k(\boldsymbol{x}, i, a, b) \sum_{\substack{\boldsymbol{y}\in\mathcal{Y}^n:\\y_{i-1}=a, y_i=b}} p(\boldsymbol{y}|\boldsymbol{x})$$
$$= \sum_{i=1}^n \sum_{a, b\in\mathcal{Y}} \phi_k(\boldsymbol{x}, i, a, b) g(i, a, b|\boldsymbol{x})$$

where we define

$$g(i, a, b | \boldsymbol{x}) = \sum_{\substack{\boldsymbol{y} \in \mathcal{Y}^n:\\y_{i-1} = a, y_i = b}} p(\boldsymbol{y} | \boldsymbol{x})$$

We can compute $g(i, a, b|\mathbf{x})$ for all $i \in [n]$ and $a, b \in \mathcal{Y}$ efficiently using a forwardbackward algorithm. Thus we have shown that the gradient can be computed efficiently for training.

3.1 Forward-Backward

Given $\boldsymbol{x} \in \mathcal{X}^n$, we compute for every position $i \in [n]$ and label $y \in \mathcal{Y}$

$$\alpha[i,y] = \sum_{\substack{y_1\dots y_i: \ y_i=y}} \prod_{j=1}^i \exp(\boldsymbol{w} \cdot \phi(\boldsymbol{x}, j, y_{j-1}, y_j))$$
$$\beta[i,y] = \sum_{\substack{y_i\dots y_n: \ y_i=y}} \prod_{j=i+1}^n \exp(\boldsymbol{w} \cdot \phi(\boldsymbol{x}, j, y_{j-1}, y_j))$$

Then it can be verified that

$$\begin{split} g(i, a, b | \boldsymbol{x}) &= \sum_{\substack{\boldsymbol{y} \in \mathcal{Y}^{n}:\\ y_{i-1} = a, y_{i} = b}} p(\boldsymbol{y} | \boldsymbol{x}) \\ &= \frac{\alpha[i - 1, a] \times \exp(\boldsymbol{w} \cdot \phi(\boldsymbol{x}, i, a, b)) \times \beta[i, b]}{\sum_{y \in \mathcal{Y}} \alpha[n, y]} \end{split}$$

ForwardBackward Input: input sequence \boldsymbol{x} of length nOutput: $g(i, a, b | \boldsymbol{x})$ for all $i \in [n]$ and $a, b \in \mathcal{Y}$

• For all $y \in \mathcal{Y}$,

 $\alpha[1,y] \leftarrow \exp(\boldsymbol{w} \cdot \boldsymbol{\phi}(\boldsymbol{x},1,y_0,y))$ where y_0 is a start symbol

• For $i = 2 \dots n$, for all $y \in \mathcal{Y}$,

$$\alpha[i, y] \leftarrow \sum_{y' \in \mathcal{Y}} \alpha[i - 1, y'] \times \exp(\boldsymbol{w} \cdot \phi(\boldsymbol{x}, i, y', y))$$

 $\beta[n,y] \gets 1$

- For all $y \in \mathcal{Y}$,
- For $i = n 1 \dots 1$, for all $y \in \mathcal{Y}$,

$$\beta[i, y] \leftarrow \sum_{y' \in \mathcal{Y}} \exp(\boldsymbol{w} \cdot \phi(\boldsymbol{x}, i+1, y, y')) \times \beta[i+1, y']$$

• Return $g(i, a, b | \boldsymbol{x})$ where

$$g(i, a, b | \boldsymbol{x}) = \frac{\alpha[i - 1, a] \times \exp(\boldsymbol{w} \cdot \boldsymbol{\phi}(\boldsymbol{x}, i, a, b)) \times \beta[i, b]}{\sum_{y \in \mathcal{Y}} \alpha[n, y]}$$