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1 From Markov to Chernoff

Markov’s inequality states that Pr(X ≥ t) ≤ E[X]/t for any X ≥ 0 and t > 0.
Thus for any nondecreasing function φ,

Pr(X ≥ t) ≤ Pr(φ(X) ≥ φ(t)) ≤ E[φ(X)]

φ(t)
∀X, t ∈ R : φ(X) ≥ 0, φ(t) > 0

This suggests natural choices for φ like a squaring or exponentiating function since
we want φ to output a nonnegative number. By choosing λ ≥ 0 and φ(z) = exp(λz),
we have

Pr(X ≥ t) ≤ E[exp(λX)]

exp(λt)
= exp (− (λt− ψX(λ))) ∀X, t ∈ R

where ψX(λ) := log E[exp(λX)] is the log MGF of X which is convex.1 We make the
bound as tight as possible by maximizing the concave function λt−ψX(λ) over λ ≥ 0.
WLOG, we will assume t ≥ E[X]; then we can drop the nonnegative constraint on
λ.2 Hence we derive Chernoff’s inequality

Pr(X ≥ t) ≤ exp

(
−
(

sup
λ∈R

λt− ψX(λ)

))
= exp (−ψ∗X(t)) ∀X, t ≥ E[X]

where ψ∗X(t) := supλ∈R λt−ψX(λ) is the convex conjugate of ψX(λ). We can directly
calculate ψX(λ) and ψ∗X(t) when X follows a standard distribution,

X ∼ N (0, ν) X ∼ Poi(ν) X ∼ Ber(p)
ψX(λ) λ2ν/2 ν(exp(λ)− λ− 1) log(p exp(λ) + 1− p)− λp
ψ∗X(t) t2/(2v) νh (t/ν) DKL (Ber(p+ t)||Ber(p))

where h(z) := (1 + z) log(1 + z)− z for z ≥ −1. For instance, when X is distributed
as N (0, 1/2), Chernoff’s inequality states that Pr(X ≥ t) ≤ exp

(
−t2

)
.

1.1 Upper Bounding the Log MGF

How do we use Chernoff’s inequality when X does not follow a standard distribution?
We generally upper bound the log MGF of X by a function φX(λ) whose correspond-
ing conjugate φ∗X(t) := supλ∈R λt − φX(λ) can be directly calculated, because then
we can use

Pr(X ≥ t) ≤ exp (−ψ∗X(t)) ≤ exp (−φ∗X(t)) ∀X, t ≥ E[X] (1)

∗Section 2 of BLM
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A natural upper bound to consider is the log MGF of a standard distribution since
its conjugate is known. In fact, the case with N (0, ν) is so important that we have
a special name for it. A random variable X is called sub-Gaussian with variance
factor ν, denoted as X ∈ G(ν), if its log MGF is bounded by the log MGF of N (0, ν):

ψX(λ) ≤ λ2ν

2
∀λ ∈ R

This immediately gives Pr(X ≥ t) ≤ exp(t2/(2v)) for X ∈ G(ν) by (1). Noting that
ψ−X(λ) = ψX(−λ) ≤ (λ2ν)/2, we also have Pr(−X ≥ t) ≤ exp(t2/(2v)). Thus by
the union bound,

Pr(|X| ≥ t) ≤ 2 exp

(
t2

2v

)
∀X ∈ G(ν), t > 0 (2)

An upper bound does not have to come from a standard distribution as long as the
corresponding conjugate can be explicitly calculated. For instance, a generalization
of sub-Gaussian is given by introducing a scale parameter: X is called sub-Gamma
on the right with variance factor ν and scale parameter c, denoted as X ∈
Γ+(ν, c), if

ψX(λ) ≤ λ2ν

2(1− cλ)
∀λ ∈

(
0,

1

c

)
Setting φX(λ) = λ2ν/2(1− cλ), it turns out that φ∗X(t) = supλ∈(0,1/c) tλ−φX(λ) not

only has a closed-form expression but also has an inverse φ∗−1X (u) =
√

2νu + cu for
u > 0 (p. 29, BLM). Combining it with (1), we have

Pr
(
X ≥

√
2νt+ ct

)
≤ exp (−t) ∀X ∈ Γ+(ν, c), t > 0 (3)

If −X ∈ Γ+(ν, c), then X is called sub-Gamma on the left and denoted as X ∈
Γ−(ν, c). If X ∈ Γ+(ν, c)∩Γ−(ν, c), then X is simply called sub-Gamma and denoted
as X ∈ Γ(ν, c). Since ψ−X(λ) = ψX(−λ) and ψX(0) = 0, we can define X ∈ Γ(ν, c)
to be

ψX(λ) ≤ λ2ν

2(1− cλ)
∀λ ∈

(
−1

c
,

1

c

)
from which it is easy to see that Γ(ν, 0) = G(ν). Re-writing (3) for X ∈ Γ(ν, c) with
the union bound, we have

Pr
(
|X| ≥

√
2νt+ ct

)
≤ 2 exp(−t) ∀X ∈ Γ(ν, c), t > 0 (4)

There is a good reason this generalization is called sub-“Gamma”. A centered Gamma
variable can be shown to be sub-Gamma (p. 28, BLM):

Y ∼ Gamma(a, b) =⇒ X := Y −E[Y ] ∈ Γ(ab2, b) (5)

This fact is useful because we often work with a special case of the Gamma distribu-
tion: the chi-squared distribution χ2(d) = Gamma(d/2, 2).3

1.2 Sum of Independent Variables

Chernoff is good for analyzing a sum of independent variables because the log MGF
factorizes. Let X1 . . . Xn be independent and define X =

∑n
i=1Xi. Then

ψX(λ) =

n∑
i=1

ψXi(λ) (6)
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1.2.1 Hoeffding’s Inequality

If Xi ∈ [ai, bi] is bounded, Hoeffding’s lemma states that Xi−E [Xi] ∈ G((bi−ai)/4).4

Thus X −E [X] ∈ G(
∑n
i=1(bi− ai)/4), and applying the sub-Gaussian Chernoff gives

Hoeffding’s inequality:

Pr(|X −E[X]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 bi − ai

)
(7)

The case with binary variablesXi ∈ {0, 1} (i.e., X is a binomial) is of special interest in
machine learning because they can be used to analyze the deviation of a sample error.
Let f be a target classifier and h ∈ C be our hypothesis in some finite hypothesis space.
Let errD(h) := Prx∼D(h(x) 6= f(x)) denote the “true” error of h on the the actual
input distribution D, and errS(h) := Prx∼S(h(x) 6= f(x)) denote the sample error of h
estimated on S = {x1 . . . xn} drawn iid from D. Note that errS(h) = (1/n)

∑n
i=1Xi

where Xi = [[h(xi) = f(xi)]] and ES [errS(h)] = errD(h). Thus for any h ∈ C,
denoting X =

∑n
i=1Xi,

Pr(|errS(h)− errD(h)| > t) = Pr (|X −E [X]| > nt) ≤ 2 exp
(
−2nt2

)
Combining this with the union bound, this allows us to make statements like: the
chance that there is any hypothesis in C whose sample error estimated on S deviates
from the true error by more than t ∈ (0, 1) is at most 1− δ, given that the number of
samples is |S| ≥ (log(2 |C|) + log(1/δ))/(2t2).

1.2.2 Bernstein’s Inequality

One shortcoming of Hoeffding (7) is that it depends on the range rather than the
actual variance of X. In cases where the variance is much smaller than the width of
the range, we can benefit from inequalities that depend explicitly on the variance.

Theorem 1.1 (Bernstein). Let X1 . . . Xn be independent variables with Xi ≤ b for
some b > 0. Let X =

∑n
i=1Xi and ν =

∑n
i=1 E

[
X2
i

]
. Then for all t > 0,

Pr (X −E [X] ≥ t) ≤ exp

(
− t2

2(ν + bt/3)

)
Proof sketch (p. 36, BLM). We can use Xi/b and fix it afterward, so assume b = 1
WLOG. The proof consists of upper bounding the log MGF of X − E [X] by the
log MGF of Poi(ν) so that Pr (X −E [X] ≥ t) ≤ νh (t/ν) (think “sub-Poisson”) and
using the inequality h(u) ≥ u2/(2(1 + u/3)).

As a thought experiment, suppose we have rare event Xi ∈ {0, 1}, say we know
E[X] ≤ B. Since ν =

∑n
i=1 E

[
X2
i

]
≤
∑n
i=1 E [Xi] = E [X], Bernstein gives us

Pr(X ≥ E[X] +B) ≤ exp

(
− B2

2(B +B/3)

)
≤ exp

(
−B

4

)
On the other hand, Hoeffding gives us

Pr(X ≥ E[X] +B) ≤ exp

(
−2B2

n

)
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So for the purpose of bounding Pr(X ≥ 2B) ≤ Pr(X ≥ E[X] +B), Bernstein can be
much sharper if B is small relative to n. For instance, if B = n1/4,

Pr(X ≥ 2
√
n) ≤ exp

(
−n

1/4

4

)
−−−−→
n→∞

0 (Bernstein)

Pr(X ≥ 2
√
n) ≤ exp

(
− 2√

n

)
−−−−→
n→∞

1 (Hoeffding)

2 Examples

2.1 Length-Preserving Transformation

What is a random matrix W ∈ Rm×d such that

E
[
||Wu||2

]
= 1 ∀u ∈ Rd : ||u||2 = 1

If we define the i-th row of W to be wi/
√
m where wi ∼ N (0, Id×d), then since w>i u is

distributed as N (0, u>u) = N (0, 1) with E
[(
w>i u

)2]
= 1, we have a desired matrix:

E
[
||Wu||2

]
=

1

m

m∑
i=1

E
[(
w>i u

)2]
= 1 ∀u ∈ Rd : ||u||2 = 1

This transformation can be seen as projecting a direction in Rd onto a random m-
dimensional subspace while maintaining its unit length. Suppose we have a finite set
of directions in Rd,

S =
{
u ∈ Rd : ||u||2 = 1

}
|S| <∞

How many dimensions m do we need to “sample” to ensure that the length of every
u ∈ S is concentrated around 1 when projected?

Sum of squared normals. Pick any u ∈ S. Since m ||Wu||2 is a sum of m squared

normals, it is distributed as χ2(m) = Gamma(m/2, 2) and thus m ||Wu||2 − m ∈
Γ(2m, 2). Then by the union bound and the sub-Gamma Chernoff (4),

Pr

(
∃u ∈ S :

∣∣∣||Wu||2 − 1
∣∣∣ ≥ 2

√
t

m
+ 2

t

m

)
≤
∑
u∈S

Pr

(∣∣∣||Wu||2 − 1
∣∣∣ ≥ 2

√
t

m
+ 2

t

m

)
=
∑
u∈S

Pr
(∣∣∣m ||Wu||2 −m

∣∣∣ ≥ 2
√
mt+ 2t

)
≤ 2 |S| exp(−t)

Aside: solving an inequality. For any given ε > 0, we want a simple characteri-
zation of m satisfying

√
t/m+ t/m ≤ ε/2 so that we can make the statement

Pr
(
∃u ∈ S :

∣∣∣||Wu||2 − 1
∣∣∣ ≥ ε) ≤ Pr

(
∃u ∈ S :

∣∣∣||Wu||2 − 1
∣∣∣ ≥ 2

√
t

m
+ 2

t

m

)
Solving for a variable in an inequality can be messy: one such way is to substitute
x =

√
t/m and find x ≥ 0 such that x2 + x − ε/2 ≤ 0 using the quadratic formula.

But the following observations greatly simplify the argument:
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• We can upper bound
√
t/m + t/m by a simpler function g(m) and then solve

for m satisfying g(m) ≤ ε/2 (since this implies
√
t/m+ t/m ≤ ε/2).

• For any x ≥ 0,
√
x is an upper bound if x ≤ 1:

• Therefore, if we assume m ≥ t, then
√
t/m + t/m ≤ 2

√
t/m = g(m). Solving

for m in 2
√
t/m ≤ ε/2, we get m ≥ 16t/ε2.

• Was that a reasonable assumption to make? It follows if we restrict our setting
to small deviation, say we always assume ε ≤ 1, since then

√
t/m+ t/m ≤ ε/2

cannot be true for m < t.

Setting δ = 2 |S| exp(−t) so that t = log(2 |S| /δ), we have the following result: given
any ε, δ ∈ (0, 1), if

m ≥ 16

ε2
log

2 |S|
δ

then with probability at least 1− δ, every u ∈ S satisfies

1− ε < ||Wu||2 < 1 + ε

In particular, note that the number of sample dimensions m does not depend on
the original dimension d. This is because we never needed the information: we only
worked with m random projections w>i u and used their Gaussian property.

Johnson-Lindenstrauss lemma Suppose we have a finite set of arbitrary vectors
S′ ⊂ Rd. What can we say about their pairwise distances when projected by the
length-preserving transformation W above? We construct a set of unit vectors S :={
x− x′/ ||x− x′||2 : x, x′ ∈ S′

}
which has at most |S′|2 elements. We now apply the

above result: given any ε, δ ∈ (0, 1), if

m ≥ 32

ε2
log

2 |S′|√
δ

then with probability at least 1− δ, every x, x′ ∈ S′ satisfies

(1− ε) ||x− x′||2 < ||Wx−Wx′||2 < (1 + ε) ||x− x′||2

This celebrated fact is known as the Johnson-Lindenstrauss lemma.

2.2 Quadratic Polynomial

Let X ∼ N (0, Id×d) and define Z = X>AX to be a quadratic polynomial of X for a
symmetric matrix A ∈ Rd×d. We are interested in understanding the concentration
properties of Z. First, note that if A = Id×d then Z =

∑d
i=1X

2
i is distributed as χ2(d)

5



and we can just use the sub-Gamma Chernoff on Z − d ∈ Γ(2d, 2). More generally,
the concentration properties of Z will depend on the spectral properties of A.

Let A = UΛU> denote an eigendecomposition of A where Λ = diag(λ1 . . . λd) is a
diagonal matrix of real-valued (but not necessarily non-negative) eigenvalues. We
follow the example considered in BLM (Example 2.12) and use A such that Ai,i = 0

for all i = 1 . . . d; this makes Tr(A) =
∑d
i=1Ai,i =

∑d
i=1 λi = 0 and Z sub-Gamma

as shown by the following argument.

Define Y = U>X to be a rotation of X, thus also distributed as N (0, Id×d). Then

Z = X>AX = Y >ΛY =

d∑
i=1

λiY
2
i =

d∑
i=1

λiY
2
i −

(
d∑
i=1

λi

)
=

d∑
i=1

λi
(
Y 2
i − 1

)
which has zero mean. We can explicitly work out the log MGF of Z to incorporate
λi thanks to the factorization of the log MGF “aligns” with λi. Specifically, we can
show that for all λ ∈ (0, 1/(2 maxi λi)),

ψZ(λ) =
d∑
i=1

ψλi(Y 2
i −1)

(λ) =

d∑
i=1

1

2
(− log (1− 2λiλ)− 2λiλ) ≤

λ2 ||A||2F
1− 2 ||A||2 λ

where the second equality can be verified by direct calculation; we refer to BLM (p.

39) for the inequality. The important point is that this shows Z ∈ Γ+(2 ||A||2F , 2 ||A||2)
and we can use the sub-Gamma Chernoff (4): for all t > 0,

Pr
(
Z ≥ 2 ||A||F

√
t+ 2 ||A||2 t

)
≤ exp(−t)

Thus the larger the matrix A is in the Frobenius norm ||A||F =
√∑

i λ
2
i or the

operator norm ||A||2 = maxi |λi|, the looser the bound is on the concentration of Z
around 0.

Reference. Concentration Inequalities (Boucheron, Lugosi, and Massart)

Notes
1Pick any α ∈ [0, 1]. The key step uses Hölder’s inequality E [|X1X2|] ≤ E [|X1|p]1/p+E [|X2|q ]1/q

with p = 1/α and q = 1/(1− α):

ψX(αλ1 + (1− α)λ2) = logE[exp(αλ1X) exp(αλ2X)]

≤ logE[exp(λ1X)]αE[exp(λ2X)]1−α = αψX(λ1) + (1− α)ψX(λ2)
2To see this, note that λt − ψX(λ) ≤ z(t − E[X]) by Jensen’s and is negative only if z < 0. On

the other hand, λt− ψX(λ) is zero at λ = 0.
3For instance, if we have iid Z ∼ N (0, νId), then

Y :=
1

ν2
||Z||2

is distributed as χ2(d). Then, by (5), Y − d/v ∈ Γ(2d, 2). This allows us to use sub-Gamma tools
such as (4) and derive statements such as

Pr
(
||Z||2 > E ||Z||2 + 2ν2

(
t+
√
dt
))
≤ exp(−t) ∀t > 0

4Consider Z such that Z = [a, b] and E [Z] = 0. Then by Taylor’s theorem,

ψZ(λ) = ψZ(0) + ψ′Z(0)λ+ ψ′′Z(ξ)
λ2

2
for some ξ ∈ [0, λ]. We have ψZ(0) = 0 and ψ′Z(0) = E[X] = 0, and the proof of Hoeffding’s lemma
consists of bounding ψ′′Z ≤ (b− a)/4. Then it follows ψZ(λ) ≤ λ2ν/2 where ν = (b− a)/4.
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