
Boosting as Coordinate Descent

Karl Stratos

1 Steepest Descent

Let f : Rd → R be a differentiable function to minimize. Let x ∈ Rd where the gradient is nonzero: ∇f(x) 6= 0d.
The rate of change of f at x along any v ∈ Rd is given by the directional derivative 〈v,∇f(x)〉 ∈ R. We seek the
direction that yields the most negative rate of change:

v∗ = arg min
v∈Rd: ||v||≤1

〈v,∇f(x)〉 (1)

where ||·|| : Rd → R≥0 is some norm. Note that it is necessary to constrain the norm, otherwise there is no finite
solution (we can blow up the objective to negative infinity by scaling). We constrain the norm size to be at most 1
without loss of generality, assuming that we will use an exact step size:

η∗ = arg min
η∈R

f(x+ ηv∗)

We obtain our next location as

xnext = x+ η∗v∗

By varying the choice of the norm in (1), we can derive various descent directions.

Lemma 1.1 (Gradient descent). A solution of (1) using the l2 norm is

v∗ = − ∇f(x)

||∇f(x)||2

Proof. By the Cauchy-Schwarz inequality, for any v ∈ Rd with ||v||2 ≤ 1 we have

〈v,∇f(x)〉 ≥ − ||v||2 × ||∇f(x)||2
≥ − ||∇f(x)||2

Choosing v∗ = − ∇f(x)
||∇f(x)||2

achieves this minimum.

Lemma 1.2 (Coordinate descent). A solution of (1) using the l1 norm is

l∗ =
d

arg max
l=1

∣∣∣∣∂f(z)

∂zl

∣∣∣∣
z=x

∣∣∣∣ v∗ = −sign
(
∂f(z)

∂zl∗

∣∣∣∣
z=x

)
× el∗ (2)

where sign(c) ∈ {±1} returns the sign of c 6= 0 and el ∈ {0, 1}d denotes the l-th standard basis vector in Rd.

Proof. (1) is now

min
v∈Rd

d∑
l=1

vl ×
∂f(z)

∂zl

∣∣∣∣
z=x

such that

d∑
l=1

|vl| ≤ 1

This is a linear program over a convex polytope (l1 ball of radius 1).1 By the fundamental theorem of linear

programming, the optimal value is attained at one of the verticies {±el}dl=1. We find a vertex v∗ that minimizes

the objective by choosing the dimension l∗ with the largest |∂f(z)∂zl∗
|z=x|, then setting v∗ = −el∗ if ∂f(z)

∂zl∗
|z=x > 0 and

v∗ = el∗ otherwise.
1There is a standard trick to canonicalize the absolute-valued constraint: introduce auxiliary variables t1 . . . td ∈ R and assert∑d
l=1 tl ≤ 1, tl ≥ vl and tl ≥ −vl for all l = 1 . . . d.

1

https://en.wikipedia.org/wiki/Fundamental_theorem_of_linear_programming
https://en.wikipedia.org/wiki/Fundamental_theorem_of_linear_programming

2 Application to Boosting

Assume a finite hypothesis class H = {h1 . . . hH} of binary classifiers hl : X → {±1}. We will assume that H is
flip-closed: given any dataset, if hp ∈ H obtains accuracy p, we have h1−p ∈ H that obtains accuracy 1− p.2 Now
any ensemble can be expressed by a parameter α ∈ RH as

gα(x) := 〈α, h(x)〉 ∈ R

Given labeled examples (x1, y1) . . . (xN , yN) ∈ X ×{±1}, we consider the empirical exponential loss of gα : X → R:

J(α) :=

N∑
i=1

exp (−yigα(xi)) =

N∑
i=1

exp

(
−

H∑
l=1

αlyihl(xi)

)

The partial derivative of J with respect to αl for some particular l ∈ {1 . . . H} is

∂J(α)

∂αl
=

N∑
i=1

exp (−yigα(xi)) (−yihl(xi))

∝
N∑
i=1

Dα(i) (−yihl(xi))

(
Dα(i) :=

exp (−yigα(xi))∑N
j=1 exp (−yjgα(xj))

)

=

N∑
i=1: hl(xi)6=yi

Dα(i)−
N∑

i=1: hl(xi)=yi

Dα(i)

= εα(hl)− (1− εα(hl))

εα(h) :=

N∑
i=1: h(xi) 6=yi

Dα(i)


= 2εα(hl)− 1

The coordinate l∗ with the largest value of |∂J(α)∂αl∗
| at α ∈ RH is thus

l∗ =
H

arg max
l=1

∣∣∣∣εα(hl)−
1

2

∣∣∣∣ =
H

arg min
l=1

εα(hl)

where the second equality holds under the premise that H is flip-closed. Assuming ∇J(α) 6= 0H we must have
εα(hl∗) < 1

2 . The steepest descent direction (3) at α ∈ RH is

v∗ = − sign

(
εα(hl∗)− 1

2

)
︸ ︷︷ ︸

−1

×el∗ = el∗

Here, we see that even if H is not flip-closed, the algorithm will automatically include flipped classifiers. The
optimal step size is η∗ = arg minη∈R F (η) where

F (η) := J(α+ ηel∗) =

N∑
i=1

exp

(
−

H∑
l=1

αlyihl(xi)

)
exp (−ηyihl∗(xi))

Assuming εα(hl∗) > 0, we can easily verify that

η∗ =
1

2
log

(
1− εα(hl∗)

εα(hl∗)

)
≥ 0

Thus αnext = α+ η∗v∗ corresponds to adding a single weighted classifier to gα as follows:

gαnext = gα +
1

2
log

(
1− εα(hl∗)

εα(hl∗)

)
× hl∗ hl∗ = arg min

h∈H
εα(h)

Initializing α = 0H and taking T steps of coordinate descent is exactly the AdaBoost algorithm.

2This assumption is without any loss of generality since we can always expand H to include h1−p = −hp. In fact, the derivation
below will work without making this assumption, but it will be messier.

2

	Steepest Descent
	Application to Boosting

