All of Backpropagation in Two Pages*

Karl Stratos

You need to understand the chain rule (Appendix B-E) and DAGs (Appendix F) before understanding backpropagation.

1 Computation Graph

A computation graph is a DAG G = (V, A) in which every node $i \in V$ is equipped with, without loss of generality, a vector-valued variable x^i of length d^i . Each non-input node $i \in V_N$ is additionally equipped with a function

$$f^i: \underset{j \in \mathbf{pa}(i)}{\sum} \mathbb{R}^{d^j} \to \mathbb{R}^{d^i}$$

The variables are populated as follows.

- An input node $i \in V_I$ expects a vector $a^i \in \mathbb{R}^{d^i}$ and populates $x^i = a^i$.
- A non-input node $i \in V_N$ recursively populates $x^i = a^i$ where

$$a^i := f^i \left(\left(x^j \right)_{j \in \mathbf{pa}(i)} \right)$$

For convenience, we will define

$$x_I := (x^i)_{i \in V_I} \qquad a_I := (a^i)_{i \in V_I}$$

$$x_I^i := (x^j)_{i \in \mathbf{pa}(i)} \qquad \forall i \in V$$

Thus the variable x^i at each node is a global function of x_I evaluated at a_I ; it is a local function of x_I^i evaluated at a_I^i .

2 Setting

We assume that the graph is connected and has an output node $\omega \in V$ such that $d^{\omega} = 1$. Then we can view the entire graph as a scalar-valued function of x_I ,

$$\mathcal{L}^{\omega}: \underset{i \in V_I}{\bigvee} \mathbb{R}^{d^i} \to \mathbb{R}$$

where $\mathcal{L}^{\omega}(x_I) := x^{\omega}$. The output value $\mathcal{L}^{\omega}(a_I) = a^{\omega}$ can be computed in runtime linear in |A| with the forward algorithm in Appendix G:

$$(a^{\omega}, \pi) \leftarrow \mathbf{forward}(G, \omega, a_I)$$

where $\pi \in \Pi_G$ is a topological ordering on G that represents the order of nodes used in computation. In particular, this populates $x^i = a^i$ for all $i \in V$.

^{*}Code: https://github.com/karlstratos/simplenet

3 Backpropagation

The goal is to calculate the gradient of \mathcal{L}^{ω} , evaluated at $x_I = a_I$, with respect to x^i for every $i \in V$:

$$z^{i} := \frac{d\mathcal{L}^{\omega}(x_{I})}{dx^{i}} \bigg|_{x_{I} = a_{I}} \in \mathbb{R}^{1 \times d^{i}}$$

$$\tag{1}$$

In light of the chain rule (15), this is just

$$z^{i} = \sum_{j \in \mathbf{ch}(i)} \frac{d\mathcal{L}^{\omega}(x_{I})}{dx^{j}} \bigg|_{x_{I} = a_{I}} \frac{dx^{j}}{dx^{i}} \bigg|_{x_{I}^{j} = a_{I}^{j}}$$

$$(2)$$

The first key observation is that the second term in the sum is simply the Jacobian of f^j , evaluated at $x_I^j = a_I^j$, with respect to x_i . But because $i \in \mathbf{pa}(j)$, this can be analytically computed. For instance, if $f^j = \mathbf{cmult}$ where $\mathbf{cmult} : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is defined as $\mathbf{cmult}(x, x') := x \odot x'$ (Appendix H), then the Jacobian of \mathbf{cmult} , evaluated at (x, x') = (a, a'), with respect to x is

$$\left. \frac{d(x \odot x')}{dx} \right|_{(x,x')=(a,a')} = \operatorname{diag}(a') \in \mathbb{R}^{d \times d}$$

The second key observation is that the first term in the sum is z^{j} , which can be recursively computed. In the base case $j = \omega$, this value is

$$\left.\frac{d\mathcal{L}^{\omega}(x_I)}{dx^{\omega}}\right|_{x_I=a_I} = \left.\frac{dx^{\omega}}{dx^{\omega}}\right|_{x_I^{\omega}=a_I^{\omega}} = 1$$

The following "backpropagation" procedure computes the value of z^i for every $i \neq \omega$ in runtime linear in |A|.

backpropagation

Input: computation graph G=(V,A) in which $x^i=a^i$ is populated for all $i\in V$, topological ordering $\pi\in\Pi_G$

- Set $\omega = \pi(|V|)$ and initialize $z^{\omega} = 1$.
- For $k = |V| 1 \dots 1$,
 - Set $i = \pi(k)$ and compute

$$z^i \leftarrow \sum_{j \in \mathbf{ch}(i)} z^j \frac{dx^j}{dx^i} \bigg|_{x_I = a_I}$$

As observed in the note by Michael Collins, another way to view the algorithm is a sum-product algorithm on a DAG (Appendix F.2) since

$$\frac{d\mathcal{L}^{\omega}(x_I)}{dx^i}\bigg|_{x_I=a_I} = \sum_{(i_1...i_n)\in P(i,\omega)} \frac{dx^{\omega}}{dx^{i_n-1}}\bigg|_{x_I^{\omega}=a_I^{\omega}} \frac{dx^{i_n-1}}{dx^{i_n-2}}\bigg|_{x_I^{i_n-1}=a_I^{i_n-1}} \cdots \frac{dx^{i_2}}{dx^{i_1}}\bigg|_{x_I^{i_2}=a_I^{i_2}}$$

But this view is not necessary to see the correctness of the algorithm.

A Notation

The set of unit vectors in \mathbb{R}^n is denoted by $\mathcal{S}^n := \{v \in \mathbb{R}^n : ||v||_2 = 1\}$. The i-th standard basis vector in \mathbb{R}^n is denoted by $e_i \in \{0,1\}^n$. The norm of a vector $x \in \mathbb{R}^n$ is denoted by ||x||: we assume a fixed choice of $||\cdot||$ (e.g., Euclidean), but we make no assumption about the choice. The (n-1)-dimensional probability simplex is denoted by $\Delta^{n-1} := \{v \in \mathbb{R}^n : v \geq 0, ||v||_1 = 1\}$. The component-wise multiplication of vectors $x, x' \in \mathbb{R}^n$ is denoted by $x \odot x' \in \mathbb{R}^n$. The concatenation of vectors $x \in \mathbb{R}^n$ and $x' \in \mathbb{R}^n$ is denoted by $x \oplus x' \in \mathbb{R}^{n+n'}$. The sigmoid function is defined as $\sigma(x) := (1 + \exp(-x))^{-1}$. We write $I_{n \times n}$ to denote the $n \times n$ identity matrix, $0_{m \times n}$ to denote the $m \times n$ zero matrix, 1_n and 0_n to denote the n-dimensional vector of ones and zeros. Given a vector $v \in \mathbb{R}^n$, $\operatorname{diag}(v) \in \mathbb{R}^{n \times n}$ refers to a diagonal matrix with $[\operatorname{diag}(v)]_{i,i} = v_i$.

B Scalar-Valued Function of a Scalar Variable

Consider $f: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$.

B.1 Limit

The **limit of** f(x) as x approaches a is a constant $L \in \mathbb{R}$ satisfying the following: given any $\epsilon > 0$, we can find $\delta > 0$ such that if $x \in \mathbb{R}$ satisfies $|x - a| < \delta$, then $|f(x) - L| < \epsilon$. In this case, we say the limit exists and write

$$\lim_{x \to a} f(x) = L \tag{3}$$

Theorem B.1. If the limit of f(x) as x approaches a exists, then it is unique.

f is **continuous at** a if $f(a) = \lim_{x \to a} f(x)$. Note that f may not be continuous but still have a limit at a.

B.2 Derivative

The **derivative of** f **at** a is a unique scalar $f'(a) \in \mathbb{R}$ such that

$$\lim_{x \to a} \frac{f(x) - (f(a) + f'(a)(x - a))}{x - a} = 0 \tag{4}$$

This definition is equivalent to

$$f'(a) := \lim_{\epsilon \to 0} \frac{f(a+\epsilon) - f(a)}{\epsilon} \tag{5}$$

We say f is **differentiable at** a if f'(a) exists.

B.3 Chain Rule

We write

$$\left. \frac{df(x)}{dx} \right|_{x=a} \in \mathbb{R}$$

to mean "the derivative of $f: \mathbb{R} \to \mathbb{R}$ with respect to parameter x when x = a". This is of course just f'(a), but what if we introduce $g: \mathbb{R} \to \mathbb{R}$ and want to compute

$$\frac{dg(f(x))}{dx}\bigg|_{x=a} \in \mathbb{R}$$

The central tool for this problem is the **chain rule**

$$\left. \frac{dg(f(x))}{dx} \right|_{x=a} = \left. \frac{dg(y)}{dy} \right|_{y=f(a)} \times \left. \frac{df(x)}{dx} \right|_{x=a} \tag{6}$$

which can now be calculated as $g'(f(a)) \times f'(a)$. Why is this true? A non-rigorous but illuminating argument is as follows. By the definition of the derivative (4)

$$g(y) \approx g(b) + g'(b)(y - b)$$
 $\forall y, b \in \mathbb{R}$
 $f(x) \approx f(a) + f'(a)(x - a)$ $\forall x, a \in \mathbb{R}$

Use y = f(x) and b = f(a), and expand f(x) by its linear approximation to have

$$g(f(x)) \approx g(f(a)) + g'(f(a))f'(a)(x-a)$$
 $\forall x, b \in \mathbb{R}$

This means that g'(f(a))f'(a) is the derivative of g(f(x)) with espect to x.

C Scalar-Valued Function of a Vector Variable

Consider $f: \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$.

C.1 Limit

The limit of a function of a vector variable is straightforward to generalizes from the scalar-variable case. The **limit of** f(x) **as** x **approaches** a is a constant $L \in \mathbb{R}$ satisfying the following: given any $\epsilon > 0$, we can find $\delta > 0$ such that if $x \in \mathbb{R}^n$ satisfies $||x - a|| < \delta$, then $|f(x) - L| < \epsilon$. The uniqueness and continuity are derived similarly.

C.2 Directional/Partial Derivative

The directional derivative of f at a in the direction of $v \in \mathcal{S}^n$ is

$$D_v f(a) := f_v'(0) = \lim_{\epsilon \to 0} \frac{f(a + \epsilon v) - f(a)}{\epsilon}$$
(7)

where $f_v : \mathbb{R} \to \mathbb{R}$ is defined by $f_v(t) := f(a + tv)$. This is a natural reduction to the scalar-variable derivative (5) (equivalent when n = 1). The *i*-th partial derivative of f at a is simply the directional derivative in the direction of e_i :

$$\frac{\partial f(a)}{\partial x_i} := D_{e_i} f(a) = \lim_{\epsilon \to 0} \frac{f(a_1, \dots, a_i + \epsilon, \dots, a_n) - f(a_1, \dots, a_n)}{\epsilon}$$

C.3 Gradient

The **gradient of** f **at** a is a unique vector $\nabla f(a) \in \mathbb{R}^n$ such that

$$\lim_{x \to a} \frac{f(x) - (f(a) + \nabla f(a)^{\top} (x - a))}{||x - a||} = 0$$
 (8)

This is a natural generalization of the scalar-variable derivative (4) (equivalent when n = 1). We say f is **differentiable at** a if $\nabla f(a)$ exists.

Equivalently, the gradient of f at a is a unique vector $\nabla f(a) \in \mathbb{R}^n$ such that

$$D_v f(a) = \nabla f(a)^\top v \qquad \forall v \in \mathcal{S}^n$$
 (9)

This version is useful because it tells us that for f(x) at x = a, $-\nabla f(a)/||\nabla f(a)||$ is the direction with the maximum rate of decrease $-||\nabla f(a)||^2$, $\nabla f(a)/||\nabla f(a)||$ is the direction with the maximum rate of increase $||\nabla f(a)||^2$, and any direction orthogonal to $\nabla f(a)$ does not change the function value.

C.4 Gradient as Partial Derivatives

It is easy to see that if f is differentiable at a, then the gradient must have the form

$$\nabla f(a) = \left(\frac{\partial f(a)}{\partial x_1} \dots \frac{\partial f(a)}{\partial x_n}\right) \tag{10}$$

because the gradient must satisfy $[\nabla f(a)]_i = \nabla f(a)^{\top} e_i = D_{e_i} f(a) = \frac{\partial f(a)}{\partial x_i}$ for all $i \in \{1...n\}$ by definition (9). However, f may not be differentiable at a even if all partial and directional derivatives exist at a. The following result allows us to eliminate this subtlety.

Theorem C.1. If the partial derivatives of f are continuous around a, then f is differentiable at a.

We generally only discuss functions with continuous partial derivatives (thus differentiable), so we will use (10) as a definition of the gradient.

D Vector-Valued Function of a Vector Variable

Consider $f: \mathbb{R}^n \to \mathbb{R}^m$ and $a \in \mathbb{R}^n$. We will view $f: \mathbb{R}^n \to \mathbb{R}^m$ simply as a concatenation of $f_1 \dots f_m : \mathbb{R}^n \to \mathbb{R}$. That is,

$$f(x) = \begin{bmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{bmatrix} \quad \forall x \in \mathbb{R}^n$$

D.1 Total Derivative

The total derivative of f at a is a unique matrix $T_a^f \in \mathbb{R}^{m \times n}$ such that

$$\lim_{x \to a} \frac{\left| \left| f(x) - (f(a) + T_a^f(x - a)) \right| \right|}{||x - a||} = 0$$
 (11)

This is a natural generalization of the gradient (8) (equivalent when m=1): the linear function $f(a) + T_a^f(x-a)$ is a linear approximation of f(x) around a. We say f is differentiable at a if T_a^f exists.

D.2 Total Derivative as Jacobian

It is easy to see that when $f_1 \dots f_m$ are differentiable, we have

$$T_a^f = \begin{bmatrix} \nabla f_1(a)^\top \\ \vdots \\ \nabla f_m(a)^\top \end{bmatrix} =: J_f(a)$$
 (12)

where the matrix $J_f(a) \in \mathbb{R}^{m \times n}$ whose *i*-th row is the gradient of f_i at a is called the **Jacobian of** f at a. Thus we will equate the Jacobian with the total derivative. It is useful to view the Jacobian in terms of scalar derivatives: the (i, j)-th value of $J_f(a) \in \mathbb{R}^{m \times n}$ is the derivative of $f_i : \mathbb{R} \to \mathbb{R}$ with respect to $x_j \in \mathbb{R}$ when x = a,

$$[J_f(a)]_{i,j} = \frac{df_i(x)}{dx_j} \bigg|_{x=a}$$
(13)

D.3 Chain Rule

We now revisit the chain rule. We write

$$\left. \frac{df(x)}{dx} \right|_{x=a} \in \mathbb{R}^{m \times n}$$

to mean "the Jacobian of $f: \mathbb{R}^n \to \mathbb{R}^m$ with respect to parameter x when x = a". This is of course just $J_f(a)$, but what if we introduce $g: \mathbb{R}^m \to \mathbb{R}^d$ and want to compute

$$\left. \frac{dg(f(x))}{dx} \right|_{x=a} \in \mathbb{R}^{d \times n}$$

Beautifully, the **chain rule** takes the same form in (14):

$$\frac{dg(f(x))}{dx}\Big|_{x=a} = \frac{dg(y)}{dy}\Big|_{y=f(a)} \qquad \frac{df(x)}{dx}\Big|_{x=a} \tag{14}$$

which can now be calculated as matrix product $J_g(f(a))J_f(a)$. We can again convince ourselves that this is true by using the definition of the total derivative (11) to derive

$$g(f(x)) \approx g(f(a)) + J_a(f(a))J_f(a)(x-a)$$
 $\forall x, b \in \mathbb{R}$

This means that $J_q(f(a))J_f(a)$ is the total derivative of g(f(x)) with respect to x.

Sum over derivatives. In scalar form, the chain rule states that the derivative of $g_i(f(x)) \in \mathbb{R}$ with respect to $x_j \in \mathbb{R}$ is

$$\left. \frac{dg_i(f(x))}{dx_j} \right|_{x=a} = \sum_{k=1}^m \frac{dg_i(y)}{dy_k} \bigg|_{y=f(a)} \times \left. \frac{df_k(x)}{dx_j} \right|_{x=a}$$

This is almost the same as the scalar-variable chain rule (6) except that we sum over partial contributions from x_j through m arguments $y_k = f_k(x)$ in $g(y_1 \dots y_m)$.

Sum over Jacobians. Sometimes it is useful to view $g: \mathbb{R}^m \to \mathbb{R}^d$ as a function of multiple vectors instead of one. Let $R_1 \dots R_K$ be any K-partition of indices $\{1 \dots m\}$ and define $f^{(k)}: \mathbb{R}^n \to \mathbb{R}^{|R_k|}$ by $f^{(k)}(x) = (f_i(x))_{i \in R_k}$. We now view g as a function

$$g: \mathbb{R}^{|R_1|} \times \cdots \times \mathbb{R}^{|R_K|} \to \mathbb{R}^d$$

that takes K input vectors $y^{(1)} \dots y^{(K)}$ where $y^{(k)} = f^{(k)}(x)$. The chain rule states that

$$\frac{dg(f(x))}{dx}\Big|_{x=a} = \sum_{k=1}^{K} \frac{dg(y^{(1)}, \dots, y^{(K)})}{dy^{(k)}}\Big|_{y=f(a)} \qquad \frac{df^{(k)}(x)}{dx}\Big|_{x=a} \tag{15}$$

where y = f(a) means $y^{(k)} = f^{(k)}(a)$ for all $k \in \{1 ... K\}$. If K = 1, we recover the single-vector case (14).

E Tensor-Valued Function of a Tensor Variable

Now that we have covered the case of a vector-valued function of a vector variable, we can easily extend it to the general case of

$$f: \mathbb{R}^{n_1 \times \dots \times n_N} \to \mathbb{R}^{m_1 \times \dots \times m_M}$$

with input tensor $A \in \mathbb{R}^{n_1 \times \cdots \times n_N}$. This is achieved by "vectorizing" the tensor. For example, A is viewed as a vector of length $(n_1 \cdots n_N)$ whose indices

$$i \in \{1 \dots (n_1 \cdots n_N)\}$$

are in one-to-one correspondence with tuples

$$(i_1,\ldots,i_M)\in\{1\ldots n_1\}\times\cdots\times\{1\ldots n_M\}$$

Let $\mathbf{ind}(i_1, \ldots, i_M)$ denote vector index corresponding to the tensor index tuple (i_1, \ldots, i_M) . Then the total derivative of f at A is viewed as a "matrix" of dimensions $(m_1 \cdots m_M) \times (n_1 \cdots n_N)$ with elements

$$\left[\frac{df(X)}{dX} \bigg|_{X=A} \right]_{\mathbf{ind}(i_1,\dots,i_M),\mathbf{ind}(j_1,\dots,j_N)} = \frac{df_{i_1,\dots,i_M}(X)}{dX_{j_1,\dots,j_N}} \bigg|_{X=A}$$
 (16)

Chain rule. Suppose we introduce

$$q: \mathbb{R}^{m_1 \times \cdots \times m_M} \to \mathbb{R}^{d_1 \times \cdots \times d_D}$$

and want to compute the total derivative of g(f(X)) with respect to X at A. Again taking the vectorized view, we can invoke the chain rule in (14) and calculate

$$\frac{dg(f(X))}{dX}\bigg|_{X=A} = \frac{dg(y)}{dy}\bigg|_{y=f(A)} \frac{df(X)}{dX}\bigg|_{X=A} = \frac{dg(y)}{dX}\bigg|_{x=A}$$

Equivalently, the chain rule states that the total derivative is a (D+N)-th-order tensor of dimensions $d_1 \times \cdots \times d_D \times n_1 \times \cdots \times n_N$ whose $(i_1, \ldots, i_D, j_1, \cdots, j_N)$ -th element is

$$\frac{dg_{i_1,\dots,i_D}(f(X))}{dX_{j_1,\dots,j_N}}\bigg|_{X=A} = \sum_{k_1=1}^{m_1} \dots \sum_{k_M=1}^{m_M} \frac{dg_{i_1,\dots,i_D}(B)}{dB_{k_1,\dots,k_M}}\bigg|_{B=f(A)} \times \frac{df_{k_1\dots k_M}(X)}{dX_{j_1,\dots,j_N}}\bigg|_{X=A}$$

F Directed Acyclic Graph (DAG)

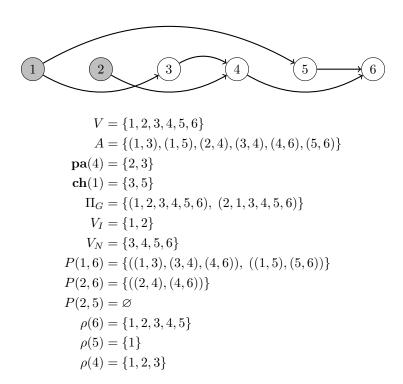
F.1 Terminology

A directed graph is a pair G = (V, A) where $V = \{1 ... |V|\}$ is a set of **nodes** and $A \in V \times V$ is a set of directed arcs. We sometimes denote the head and tail of an arc a = (i, j) by $a^h = i$ and $a^t = j$. A directed acylic graph (DAG) is a directed graph with no cycles. Equivalently, a DAG is a directed graph with a **topological** ordering: a sequence π of V such that for every arc $(i, j) \in A$, i comes before j in π . Let Π_G denote the set of all topological orderings in G.

Given a node $i \in V$, we denote the set of its parents by $\mathbf{pa}(i) := \{j \in V : (j,i) \in A\}$ and the set of its children by $\mathbf{ch}(i) := \{j \in V : (i,j) \in A\}$. We say $i \in V$ is a **input node** if $\mathbf{pa}(i) = \emptyset$. Let V_I and V_N denote the set of input and non-input nodes: together, they form a partition of V. We say $i \in V$ is an **output node** if $\mathbf{ch}(i) = \emptyset$. The set of \mathbf{paths} from $i \in V$ to $j \in V$ where $i \neq j$ is

$$P(i,j) := \left\{ (a_1 \dots a_n) \in A^n : n \ge 2, a_1^h = i, a_n^t = j, a_{k-1}^t = a_k^h \ \forall k = 2 \dots n \right\}$$

Denote the set of nodes that can reach $j \in V$ by $\rho(j) := \{i \in V : |P(i,j)| \ge 1\}$. Here is an example of a DAG (input nodes shaded for readability):



F.2 Sum-Product Algorithm on DAGs

Let Q be any set equipped with associative binary operations + and *. We assume that the multiplicative operation * is distributive over +. We assume that the additive operation + is commutative but the multiplicative operation * may not be. For

instance, Q can be the set of matrices and (+,*) can be the matrix addition and multiplication (applicable only to matrices with correct dimensions).

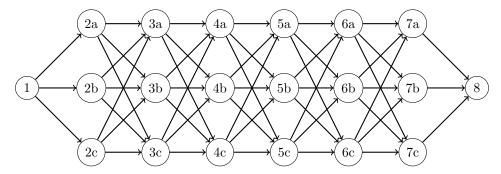
Suppose we have a DAG G=(V,A) in which each arc $(i,j)\in A$ is associated with $Q^{i\to j}\in \mathcal{Q}$. A computation of interest is: given the last node $t\in V$ in a topological ordering π , calculate

$$\mu(s) := \sum_{(a_1 \dots a_n) \in P(s,t)} \left(Q^{a_n^h \to a_n^t} * \dots * Q^{a_1^h \to a_1^t} \right)$$
 (17)

for all reachable $s \in \rho(t)$. Note the reverse order of multiplication: because * is not commutative, it will be important to respect this order. For instance, in the above example DAG with t = 6, we have

$$\mu(1) = \left(Q^{4 \to 6} * Q^{3 \to 4} * Q^{1 \to 3}\right) + \left(Q^{5 \to 6} * Q^{1 \to 5}\right)$$

Explicitly summing over all paths is not a good idea since the number of paths in P(s,t) may grow exponentially in the length of a path. For instance, in the following DAG



the number of paths in P(1,8) is $3^6 = 729$. However, observe that:

• If $s \in \mathbf{pa}(t)$:

$$\mu(s) = Q^{s \to t}$$

• If $s \notin \mathbf{pa}(t)$:

$$\mu(s) = \sum_{(a_1 \dots a_n) \in P(s,t)} \left(Q^{a_n^h \to a_n^t} * \dots * Q^{a_2^h \to a_2^t} * Q^{a_1^h \to a_1^t} \right)$$

$$= \sum_{i \in \mathbf{ch}(s)} \sum_{(a_2 \dots a_n) \in P(i,t)} \left(Q^{a_n^h \to a_n^t} * \dots * Q^{a_2^h \to a_2^t} * Q^{s \to i} \right)$$

$$= \sum_{i \in \mathbf{ch}(s)} \left(\sum_{(a_2 \dots a_n) \in P(i,t)} Q^{a_n^h \to a_n^t} * \dots * Q^{a_2^h \to a_2^t} \right) * Q^{s \to i}$$

$$= \sum_{i \in \mathbf{ch}(s)} \mu(i) * Q^{s \to i}$$

where the third equality uses the distributivity of * over +.

Thus we can use the following one-liner dynamic programming algorithm.

Input: G = (V, A), topological ordering $\pi \in \Pi_G$, $t = \pi(|V|)$ Output: $\mu(s)$ in (17) for all $s \in \rho(t)$

• For $i = |V| - 1 \dots 1$, set $s = \pi(i)$ and compute

$$\mu(s) = \begin{cases} Q^{s \to t} & \text{if } s \in \mathbf{pa}(t) \\ \sum_{j \in \mathbf{ch}(s)} \mu(j) * Q^{s \to j} & \text{else} \end{cases}$$

It is critical to follow a reverse topological ordering since it guarantees that $\mu(j)$ is computed for all children j of s before $\mu(s)$ is computed. The number of computation steps is |A|: in the example above, it is $51 \ll 729$.

G Forward Computation

forward

Input: computation graph G = (V, A), output node $\omega \in V$, input value a_I **Output**: $\mathcal{L}^{\omega}(x_I) := x^{\omega}$ evaluated at a_I , topological ordering $\pi \in \Pi_G$

- $a^{\omega} \leftarrow \mathbf{forward} \cdot \mathbf{rec}(G, \omega, a_I, \pi \leftarrow ())$
- Return (a^{ω}, π) .

forward-rec

Input: computation graph $G = (V, A), i \in V$, input value a_I , topological ordering in construction π

- If $i \in V_I$ or a^i has already been calculated, just return a^i .
- Otherwise,
 - Calculate $a^j \leftarrow \mathbf{forward}\text{-}\mathbf{rec}(G, a_I, j, \pi)$ for each $j \in \mathbf{pa}(i)$.
 - $\text{ Set } \pi \leftarrow \pi + (i) \text{ and return } x^i \leftarrow f^i \left(\left(a^j \right)_{j \in \mathbf{pa}(i)} \right).$

H Example Functions in a Computation Graph

H.1 Common Functions

$$\begin{array}{lll} \mathbf{add}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d & \mathbf{add}(x,x') := x + x' \\ \mathbf{cmult}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d & \mathbf{cmult}(x,x') := x \odot x' \\ \mathbf{concat}: \mathbb{R}^d \times \mathbb{R}^{d'} \to \mathbb{R}^{d+d'} & \mathbf{concat}(x,x') := x \odot x' \\ \mathbf{mult}: \mathbb{R}^{d \times d''} \times \mathbb{R}^{d'' \times d'} \to \mathbb{R}^{d \times d'} & \mathbf{mult}(U,V) := UV \\ \mathbf{pick}: \mathbb{R}^d \times \{1 \dots d\} \to \mathbb{R} & \mathbf{pick}(x,l) := x_l \\ \\ \mathbf{pnls}: \mathbb{R}^d \times \mathbb{Z} \to \mathbb{R} & \mathbf{pnls}(x,l) := \log \left(\sum_{j=1}^d \exp(x_j)\right) - x_l \\ \\ \mathbf{pow}: \mathbb{R}^d \times \mathbb{Z} \to \mathbb{R}^d & \mathbf{pow}_i(x,n) := x_i^n \\ \\ \mathbf{tanh}: \mathbb{R}^d \to \mathbb{R}^d & \mathbf{tanh}_i(x) := \tanh(x_i) \\ \\ \mathbf{logit}: \mathbb{R}^d \to \mathbb{R}^d & \mathbf{logit}_i(x) := \frac{1}{1 + \exp(-x_i)} \\ \\ \mathbf{sm}: \mathbb{R}^d \to \mathbb{R}^d & \mathbf{sm}_i(x) := \frac{\exp(x_i)}{\sum_{j=1}^d \exp(x_j)} \end{array}$$

H.2 Jacobians

Multi-argument functions.

$$\begin{array}{lll} \mathbf{add} & \frac{d(x+x')}{dx} = I_{d \times d} & \frac{d(x+x')}{dx'} = I_{d \times d} \\ \mathbf{cmult} & \frac{d(x \odot x')}{dx} = \mathrm{diag}(x') & \frac{d(x \odot x')}{dx'} = \mathrm{diag}(x) \\ \mathbf{concat} & \frac{d(x \oplus x')}{dx} = \begin{bmatrix} I_{d \times d} \\ 0_{d' \times d} \end{bmatrix} & \frac{d(x \oplus x')}{dx'} = \begin{bmatrix} 0_{d \times d'} \\ I_{d' \times d'} \end{bmatrix} \\ \mathbf{mult} & \frac{d[UV]_{i,j}}{dU_{k,l}} = \begin{cases} V_{l,j} & \text{if } i = k \\ 0 & \text{else} \end{cases} & \frac{d[UV]_{i,j}}{dV_{k,l}} = \begin{cases} U_{i,k} & \text{if } j = l \\ 0 & \text{else} \end{cases} \\ \mathbf{pick} & \frac{d\mathbf{pick}(x,l)}{dx} = e_l \\ \mathbf{pnls} & \frac{d\mathbf{pnls}(x,l)}{dx_i} = \begin{cases} \mathbf{sm}_i(x) - 1 & \text{if } i = l \\ \mathbf{sm}_i(x) & \text{else} \end{cases} \\ \mathbf{pow} & \frac{d\mathbf{pow}_i(x,n)}{dx_j} = \begin{cases} n \times x_i^{n-1} & \text{if } i = j \\ 0 & \text{else} \end{cases}$$

Single-argument functions.

$$\begin{aligned} & \frac{d \mathbf{tanh}_i(x)}{dx_j} = \left\{ \begin{array}{ll} 1 - \mathrm{tanh}(x_i)^2 & \text{if } i = j \\ 0 & \text{else} \end{array} \right. \\ & \mathbf{logit} & \frac{d \mathbf{logit}(x)_i}{dx_j} = \left\{ \begin{array}{ll} \mathbf{logit}_i(x) \times (1 - \mathbf{logit}_i(x)) & \text{if } i = j \\ 0 & \text{else} \end{array} \right. \\ & \mathbf{sm} & \frac{d \mathbf{sm}_i(x)}{dx_j} = \left\{ \begin{array}{ll} \mathbf{sm}_i(x) \times (1 - \mathbf{sm}_i(x)) & \text{if } i = j \\ -\mathbf{sm}_i(x) \times \mathbf{sm}_j(x) & \text{else} \end{array} \right. \end{aligned}$$

I Practical Issues

I.1 Shape

Although we have followed the standard notation in vector calculus and defined the Jacobian of $f^j: \underset{t \in \mathbf{pa}(j)}{\times} \mathbb{R}^{d^t} \to \mathbb{R}^{d^j}$ with respect to x^i to be a $(d^j \times d^i)$ matrix so that $z^i \in \mathbb{R}^{1 \times d^i}$ in (2) is a row vector, in practice we want to make z^i a column vector to match the shape of $x^i \in \mathbb{R}^{d^i}$ (which we usually assume as a column vector). This is easily achieved by working with the transpose of (2). This means that we directly compute z^i as a column vector of length d^i given by summing over products of a $(d^i \times d^j)$ matrix and a column vector of length d^j ,

$$z^{i} = \sum_{j \in \mathbf{ch}(i)} J^{j} \times z^{j} \tag{18}$$

where $J^j \in \mathbb{R}^{d^i \times d^j}$ is the transpose of the Jacobian, that is

$$J_{k,l}^j = \frac{df_l^j(x_I^j)}{dx_k^i}\bigg|_{x_I^j = a_I^j}$$

I.2 Propagating a Linear Transformation of the Gradient

Consider any node with a local function f with output dimension d. For each of its parent variables $p \in \mathbb{R}^{d^p}$, let $g^p \in \mathbb{R}^{d^p}$ denote the gradient of p initialized to zero. Assuming that the gradient vector of the current node $g \in \mathbb{R}^d$ is complete, in light of (18) and the reverse topological traversal in backpropagation, the *only* calculation we need to perform is: for each parent variable p,

$$g^p \leftarrow g^p + J_f^p g$$

where $J_f^p \in \mathbb{R}^{d^p \times d}$ denotes the Jacobian of f with respect to p. Thus a central computational issue is to calculate the matrix-vector product $J_f^p g$ as efficiently as possible. Rather than explicitly calculating the matrix J_f^p and then calculating the product, we use the closed-form expressions given below (obtained by using Jacobians in Section H.2).

Multi-argument functions.

$$\begin{array}{ll} \mathbf{add}\;(g\in\mathbb{R}^d) & J^x_{(x+x')}g=g & J^{x'}_{(x+x')}g=g \\ \mathbf{cmult}\;(g\in\mathbb{R}^d) & J^x_{(x\odot x')}g=x'\odot g & J^{x'}_{(x\odot x')}g=x\odot g \\ \mathbf{concat}\;(g\in\mathbb{R}^{d+d'}) & J^x_{(x\oplus x')}g=g_{1:d} & J^x_{(x\oplus x')}g=g_{d+1:d'} \\ \mathbf{mult}\;(G\in\mathbb{R}^{d\times d'}) & J^U_{(UV)}G=GV^\top & J^V_{(UV)}G=U^\top G \\ \mathbf{pick}\;(g\in\mathbb{R}) & J^x_{\mathbf{pick}(x,l)}g=ge_l \\ \mathbf{pnls}\;(g\in\mathbb{R}) & J^x_{\mathbf{pnls}(x,l)}g=g(\mathbf{sm}(x)-e_l) \\ \mathbf{pow}\;(g\in\mathbb{R}^d) & J^x_{\mathbf{pow}(x,n)}g=n\mathbf{pow}(x,n-1)\odot g \end{array}$$

Single-argument functions.

$$\begin{split} \mathbf{sm} \ (g \in \mathbb{R}^d) \qquad J^x_{\mathbf{sm}(x)}g &= g \odot \mathbf{sm}(x) - \left(\sum_{i=1}^d [g \odot \mathbf{sm}(x)]_i\right) \mathbf{sm}(x) \\ \mathbf{SM} \ (G \in \mathbb{R}^{n \times d}) \quad J^X_{\mathbf{SM}(X)}G &= G \odot \mathbf{SM}(X) - \mathrm{diag} \left((G \odot \mathbf{SM}(X)).\mathrm{sum}(1)\right) \mathbf{SM}(X) \end{split}$$

The matrix version $\mathbf{SM}: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times d}$ is row-wise softmax over n rows.