
Efficient Attention

Karl Stratos

1 Overview

In decoder-only transformers, attention computes1

O︸︷︷︸
T×d

= (Q︸︷︷︸
T×d

K⊤︸︷︷︸
d×T

).softmax(2) V︸︷︷︸
T×d

(1)

How to improve the efficiency of (1) has been a central research topic in recent years.

1.1 Memory Scalability

Naively computing QK⊤ ∈ RT×T requires O(T 2) memory. Many works have noted that (1) can be computed
incrementally [8, 5, 9]. Partition K = (K1 . . .KC) and V = (V1 . . . VC) into chunks of shape Λ × d . Initialize
π ← 0T×1 and O ← 0T×d. For j = 1 . . . C compute (⊘,⊛ are broadcasted division and multiplication, Appendix A)

Aj ← Q︸︷︷︸
T×d

K⊤
j︸︷︷︸

d×Λ

πnew ← π + exp(Aj)︸ ︷︷ ︸
T×Λ

.sum(2)

Onew ← (π ⊘ πnew)︸ ︷︷ ︸
T×1

⊛ O︸︷︷︸
T×d

+(exp(Aj)⊘ πnew)︸ ︷︷ ︸
T×Λ

Vj︸︷︷︸
Λ×d

(2)

and overwrite π ← πnew and O ← Onew at each step. It is easy to verify that the final O is equal to (1). We now
need O(TΛ) additional memory (i.e., excluding the O(Td) memory for storing the input/output Q,K, V,O ∈ RT×d)
instead of O(T 2).

1.2 Runtime Latency

How can we compute (1) faster? Insidiously, attention is memory-bound, not compute-bound [10, 4]: it is slow
not because the operations (matmul, softmax) are slow but because it moves data around in memory. Prior to an
operation, an accelerator moves data from large but slow global memory (aka. HBM) to small but fast on-chip
memory (aka. SRAM) shared by execution units (e.g., threads on GPUs). Accessing HBM takes time, thus a
“good” accelerator program (aka. kernel) minimizes HBM access, e.g., by using a small intermediate cache on
SRAM. For example, consider the following algorithms for square matrix multiplication C = AB (A,B are already
in HBM):

MatMul I

• C ← 0n×n

• For i = 1 . . . n:

– For j = 1 . . . n:

∗ ci,j ← 0

∗ For k = 1 . . . n:

· ai,k ← READ(Ai,k)

· bk,j ← READ(Bk,j)

· Ci,j ← Ci,j + ai,k × bk,j

MatMul II (cache u, v ∈ Rn on SRAM)

• C ← 0n×n

• For k = 1 . . . n:

– For i = 1 . . . n:

∗ ui ← READ(Ai,k)

∗ vi ← READ(Bk,i)

– For i = 1 . . . n:

∗ For j = 1 . . . n:

· Ci,j ← Ci,j + ui × vj

While they both perform 2n3 FLOPs (floating-point operations), MatMul I performs 2n3 global reads, whereas
MatMul II performs 2n2 global reads by using the shared on-chip memory u, v ∈ Rn to avoid re-reading.2 In a
similar manner, FlashAttention (Section 2) is an attention kernel that minimizes HBM access.

1For simplicity, we omit the causal masking which rewrites A = QK⊤ to contain At,t′ = −∞ for t′ > t.
2It also uses the observation that AB =

∑n
k=1 A.col(k)A.row(k).

1

1.3 Inference Latency

At inference time, (1) becomes a matrix-vector product:3

o︸︷︷︸
1×d

= (q︸︷︷︸
1×d

K⊤︸︷︷︸
d×(T+1)

).softmax(2) V︸︷︷︸
(T+1)×d

(3)

where K,V ∈ R(T+1)×d include T previous key-value embeddings. To avoid recomputation, these embeddings are
loaded from a cache called the KV cache. Loading from the KV cache becomes the latency bottleneck as T grows.
Various works propose modifications of the transformer architecture to make the KV cache smaller (Section 3), e.g.,
by reducing the number of key-value heads (GQA [10, 1]) or down-projecting the hidden states (MLA [7]).

1.4 Inference Throughput

Throughput is the key efficiency metric when we process multiple inference requests. Throughput is again memory-
bound; it is low because we lack the memory to process more requests concurrently. A main issue is memory
fragmentation. Consider two simultaneous requests A,B with maximum target lengths TB ≫ TA. A standard
memory management scheme allocates a continguous sequence of bytes (Appendix B) for the batch tensor. This
causes two types of memory waste:

• External fragmentation: For request A, O(TB − TA) bytes are never used.

• Internal fragmentation: Assuming the generations for A,B end early (i.e., the model generates the end-
of-sequence tokens) with lengths T ′

A, T
′
B , O((TA − T ′

A) + (TB − T ′
B)) bytes are never used.

Even the reserved bytes for future tokens that do get used stay unused most of the time; it is more efficient to
use them for processing other requests until needed. PagedAttention [6], implemented in the popular vLLM
library, solves this problem by applying the concept of paged virtual memory. It non-contiguously stores the KV
cache in small, fixed-size blocks, then uses a centralized scheduler to coordinate GPUs on how to use them. It
reduces memory fragmentation and also enables features like cache sharing and request prioritization, dramatically
increasing the throughput when serving a large number of streaming requests.

2 FlashAttention

2.1 Review of Standard Attention

The forward function of standard attention takes Q,K, V ∈ RT×d as input and outputs O ∈ RT×d by

O = exp

(
QK⊤
√
d

⊖

(
QK⊤
√
d

)
.max(2)

)
︸ ︷︷ ︸

T×T

⊘ exp

(
QK⊤
√
d

⊖

(
QK⊤
√
d

)
.max(2)

)
.sum(2)︸ ︷︷ ︸

T×1

V︸︷︷︸
T×d

(4)

This is a real-world version of (1) which uses numerically stable softmax and dot product scaling. The backward
function computes zQ, zK , zV ∈ RT×d given zO ∈ RT×d, where zX = ∂L

∂X ∈ Rm×n denotes the gradient of a loss

L ∈ R with respect to tensor X ∈ Rm×n. Let A = QK⊤
√
d

and P = A.softmax(2) denote the intermediate variables

in (4) whereby O = PV (we assume that A,P are not used outside this operation). From the backward functions of
matmul and softmax (Appendix C.1), we have zP = zOV

⊤ ∈ RT×T and zA = P⊛zP−(P⊛zP).sum(2)⊛P ∈ RT×T .
By the chain rule,

zV ← zV + P⊤zO zK ← zK +
z⊤AQ√

d
zQ ← zQ +

zAK√
d

(5)

Clearly, the memory overhead of both (4) and (5) is O(T 2) since we explicitly compute A,P ∈ RT×T . It makes
O(T 2 + Td) HBM reads (for loading and writing P as well as Q,K, V).

3This is preceded by a so-called “prefill” stage that computes (1) for all conditioning tokens to obtain the initial KV cache and
predict the first token, which becomes the decoding input in the first step.

2

https://github.com/vllm-project/vllm
https://en.wikipedia.org/wiki/Virtual_memory#Paged_virtual_memory

2.2 Forward

FlashAttention [3] first notes incremental attention (2) has implications not only on memory usage but also HBM
access. Let Λ denote a chunk size, grouping K,V ∈ RT×d into C = T

Λ chunks (K1 . . .KC), (V1 . . . VC). Let Γ denote

a batch size, grouping Q ∈ RT×d into B = T
Γ batches (Q1 . . . QB). The following is a minor variant of (2) that

uses stable softmax and treats each query batch Qi independently (assuming a batch-wise causal mask); this style
of computation is called “tiling” because we process a Γ× Λ tile of the attention matrix at each step. We assume
that the inputs Q,K, V ∈ RT×d are in HBM. We assume that c ← −∞T×1, π ← 0T×1, O ← 0T×d are initialized
and in HBM.

FlashForward

1. Load c = (c1 . . . cB), π = (π1 . . . πB) ∈ RT×1 to SRAM.

2. For j = 1 . . . C:

(a) Load Kj , Vj ∈ RΛ×d to SRAM.

(b) For i = 1 . . . B: (embarrassingly parallel)

i. Load Qi, Oi ∈ RΓ×d to SRAM.

ii. Compute

Ai,j ←
QiK

⊤
j√
d
∈ RΓ×Λ cnew

i ← max (ci, Ai,j .max(2)) ∈ RΓ×1

πnew
i ← exp(ci − cnewi)⊛ πi + exp(Ai,j ⊖ cnewi).sum(2) ∈ RΓ×1

Onew
i ← (πi ⊘ πnew

i)⊛ exp(ci − cnewi)⊛Oi + (exp(Ai,j ⊖ cnewi)⊘ πnew
i)Vj ∈ RΓ×d

iii. Update ci ← cnew
i , πi ← πnew

i , Oi ← Onew
i .

iv. Write Oi ∈ RΓ×d to HBM.

3. Return O ∈ RT×d in HBM.

It has O(max(T,ΓΛ)) additional memory overhead (to store c, π ∈ RT and Ai,j ∈ RΓ×Λ). It makes O(CTd) =

O(T
2d
Λ) HBM accesses since it accesses Q,O for C times in the inner loop. For best latency, we want to use the

largest possible Λ,Γ under the on-chip memory constraint.4 Let M denote the number of bytes in SRAM. The
constraints are:

Λd = O(M) (to fit Kj , Vj ∈ RΛ×d)

Γd = O(M) (to fit Qi, Oi ∈ RΓ×d)

ΛΓ = O(M) (to fit Ai,j ∈ RΓ×Λ)

Choosing Λ = Θ(Md) and Γ = Θ(min(Md , M
Λ)) = Θ(min(Md , d)) satisfies these constraints.5 This implies O(T

2d2

M)
HBM accesses, which is fewer than the naive O(T 2) HBM accesses assuming M > d2. The assumption is benign
given that d corresponds to the head dimension (e.g., d = 64 = 8,192

128 for 70B Llama 3) and modern chips have many
kilobytes of on-chip memory (e.g., A100s have 192KB or M = 196, 608 bytes).

2.3 Backward

Recall the formulas in the standard backward function (5) where we express P = A.softmax(2) using c, π ∈ RT×1

from the forward function:

A =
QK⊤
√
d
∈ RT×T P = exp(A⊖ c)⊘ π ∈ RT×T O = PV ∈ RT×d

zA = P ⊛ (zP ⊖ (P ⊛ zP).sum(2)) ∈ RT×T zP = zOV
⊤ ∈ RT×T zO ∈ RT×d (input)

zQ ← zQ +
zAK√

d
∈ RT×d zK ← zK +

z⊤AQ√
d
∈ RT×d zV ← zV + P⊤zO ∈ RT×d

4But note that there is a tradeoff between memory usage and HBM access. If we set Λ = T (i.e., 1 chunk), hypothetically assuming
we have that much SRAM, we make only O(Td) accesses but the memory overhead is back to standard attention (i.e., O(T 2) for batch
size Γ = T). If we set Λ = 1 (i.e., T chunks), memory usage is truly O(T) but we make O(T 2d) HBM accesses.

5In the paper, the authors specify “M
4d

” to account for the fact that each 32-bit float takes up 4 bytes of memory. However, Λ,Γ are
just fixed to some reasonable size (e.g., 512) in practice.

3

Since we never explicitly store the whole P ∈ RT×T during forward, we need to recompute it in tiles (gradient

checkpointing). This is easy since Pi,j = exp(
QiK

⊤
j√

d
⊖ ci)⊘πi ∈ RΓ×Λ where ci, πi ∈ RΓ×1 denote the i-th segments

of c, π. The gradients must be computed in tiles as well. Let zO = (zO,1 . . . zO,B) where zO,i ∈ RΓ×d. The (i, j)-th tile
of zP is zP,i,j = zO,iV

⊤
j ∈ RΓ×Λ. The case for zA is trickier. If we have the vector u := (P ⊛ zP).sum(2) ∈ RT×1,

then (i, j)-th tile of zA is zA,i,j = Pi,j ⊛ (zP,i,j ⊖ ui) ∈ RΓ×Λ where ui ∈ RΓ×1 denotes the i-th segment of u.
However, computing u requires summing over all T elements of P , which we never explicitly materialize. To avoid
this difficulty, FlashAttention uses the following reparameterization:

Lemma 2.1.

u := (P ⊛ zP)︸ ︷︷ ︸
T×T

.sum(2) = (O ⊛ zO)︸ ︷︷ ︸
T×d

.sum(2) ∈ RT×1 (6)

The intuition is that O = PV has “already done” the sum over T elements, and we should be able to use this
fact given Pz⊤P = PV z⊤O = Oz⊤O . The paper proves (6) by expanding each element and showing equivalence. Here
we give a simpler proof using a property of the Hadamard product, (M ⊙M ′)v = diag

(
MDv(M

′)⊤
)
where Dv

constructs a diagonal matrix from vector v and diag(G) extracts the diagonal entries of matrix G.

Proof. In this case, the broadcasted multiplication ⊛ coincides with the Hadamard product ⊙. Thus we show

(P ⊙ zP)1
⊤
T = diag

(
Pz⊤P

)
= diag

(
PV z⊤O

)
= diag

(
Oz⊤O

)
= (O ⊙ zO)1

⊤
d

Given Lemma 2.1, we can now compute ui = (Oi ⊛ zO,i).sum(2) ∈ RΓ×1 without P . Finally, we can accumulate
the gradients zQ, zK , zV in tiles since M(M1 . . .Mm) =

∑
i MMi for any matrix M ∈ Rd×d and Mi ∈ Rd×d/m (e.g.,

zQ,i accumulates
∑

j(zA,i,jKj)/
√
d). Put together, the backward function is summarized below. We assume that

Q,K, V , the computed quantities from the forward function c, π,O, and the gradient slots zO, zQ, zK , zV ∈ RT×d

are in HBM.

FlashBackward

1. Load c = (c1 . . . cB), π = (π1 . . . πB) ∈ RT×1 to SRAM.

2. For j = 1 . . . C:

(a) Load Kj , Vj , zK,j , zV,j ∈ RΛ×d to SRAM.

(b) For i = 1 . . . B:

i. Load Qi, Oi, zO,i, zQ,i ∈ RΓ×d to SRAM.

ii. Compute

Pi,j ← exp

(
QiK

⊤
j√
d

⊖ ci

)
⊘ πi ∈ RΓ×Λ zV,j ← zV,j + (Pi,j)

⊤zO,i ∈ RΛ×d

zP,i,j ← zO,i(Vj)
⊤ ∈ RΓ×Λ zK,j ← zK,j +

(zA,i,j)
⊤Qj√
d

∈ RΛ×d

ui ← (Oi ⊛ zO,i).sum(2) ∈ RΓ×1 zQ,i ← zQ,i +
zA,i,jKj√

d
∈ RΓ×d

zA,i,j ← Pi,j ⊛ (zP,i,j ⊖ ui) ∈ RΓ×Λ

iii. Write zQ,i ∈ RΓ×d to HBM.

(c) Write zK,j , zV,j ∈ RΛ×d to HBM.

3. Return zQ, zK , zV ∈ RT×d.

The additional memory overhead is O(max(T,ΓΛ,Γd,Λd)). It again makes O(CTd) = O(T
2d
Λ) HBM accesses since

it accesses Q,O, zO, zQ for C times in the inner loop. Thus choosing the chunk size Λ = Θ(Md) and the batch size

Γ = Θ(min(Md , d)) where M is the SRAM size again implies O(T
2d2

M) HBM accesses. See Appendix D for further
refinement of FlashAttention.

4

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)#Properties

3 KV Cache Reduction

In practice, we always use multi-head attention (MHA). MHA has trainable parameters Wq,Wk,Wv,Wf ∈ Rd×d.
It assumes a number of heads H that divides d, yielding the head dimension dH := d

H . Given input hidden states

X ∈ RT×d, it outputs Õ ∈ RT×d by

[Q1 . . . QH] = XWq Oh =

(
QhK

⊤
h√

dH

)
.softmax(2)Vh ∀h ∈ {1 . . . H}

K = [K1 . . .KH] = XWk Õ = [O1 . . . OH]Wf (7)

V = [V1 . . . VH] = XWv

where Qh,Kh, Vh ∈ RT×dH are the H heads extracted from X. By exploiting memory contiguity (Appendix B.3),
we can batch the heads to perform the operations efficiently and (almost) free of additional memory.6 The cache
size is 2Td (for storing K,V ∈ RT×d).

3.1 Grouped Query Attention (GQA)

GQA reduces the number of heads in the KV cache. It assumes H ′ = H
R heads for key and value which are then

shared between a group of R query heads [10, 1]. The trainable parameters of GQA are Wq,Wf ∈ Rd×d and

Uk, Uv ∈ Rd× d
R (12 (

R+1
R) of MHA). Given X ∈ RT×d, it outputs Õ ∈ RT×d by

[Q1 . . . QH] = XWq Oh =

(
QhK

⊤
⌈ h
R ⌉√

dH

)
.softmax(2)V⌈ h

R ⌉ ∀h ∈ {1 . . . H}

K = [K1 . . .KH′] = XUk Õ = [O1 . . . OH]Wf

V = [V1 . . . VH′] = XUv

Since K,V ∈ RT× d
R , the cache size is 2Td

R (1
R of MHA). The contiguous query matching h 7→ ⌈ hR⌉ can be done

efficiently.7 GQA was initially developed as a post-training scheme to speed up decoding (i.e., replace MHA with
GQA and finetune). Now, it is standard to just use GQA directly during training.

3.2 Multi-Head Latent Attention (MLA)

MLA reduces the dimension of the KV cache by imposing a low rank m ≪ d on the key and value embeddings
[7]. The training parameters of MLA are Dq, Dkv ∈ Rd×m, Uq, Uk, Uv ∈ Rm×d, and Wf ∈ Rd×d (m2d + 1

4 of MHA).
Given X ∈ RT×d, it computes MHA (7) with the rank-m heads

[Q1 . . . QH] = XDqUq [K1 . . .KH] = XDkv︸ ︷︷ ︸
Z

Uk [V1 . . . VH] = XDkv︸ ︷︷ ︸
Z

Uv (8)

Since Z ∈ RT×m is shared by key and value, the cache size is Tm (m2d of MHA). At test time, the additional cost
of up-projecting Z can be avoided by absorbing Uk, Uv. This can be seen easily in the case H = 1. We precompute
E = UqU

⊤
k ∈ Rm×m and F = UvWf ∈ Rm×d. Then given query X, we load cache Z and compute

Õ =

(
XDqEZ⊤
√
d

)
.softmax(2)ZF

The case H > 1 is similar.

6For instance, Q = (XWq).view (T,H, dH) .transpose(1, 2) creates a batch Q ∈ RH×T×dH of H queries with dimension dH without
making any copy of the tensor. Then we can compute vanilla attention (4) by broadcasting to obtain the batched output O ∈ RH×T×dH .

For the final step of matrix multiplication with Wf ∈ Rd×d, we can compute Õ ← O.transpose(1, 2).reshape(T, d)Wf where we need
to reshape the tensor instead of view since transpose creates a non-contiguous tensor. This creates a copy, incurring O(Td) additional
memory.

7If K ∈ RH′×T×dH denotes the H′ key heads in batch form, then K′ = K.expand(H′, R, T, dH).reshape(H,T, dH) repeats each
key embedding for R times (expand creates a non-contiguous tensor). After this step, computation is the same as MHA.

5

3.2.1 MLA with RoPE

We cannot absorb the up-projections to each other when we use the RoPE embedding [11]. This is because RoPE
applies some transformation R : RT×dH → RT×dH to the already up-projected heads Qh,Kh. Thus MLA computes
separate embeddings for RoPE. Specifically, it uses additional parameters Vq ∈ Rm×Hp and Dk ∈ Rd×p to compute
the p-dimensional decoupled query-key embeddings: 8

[QRoPE,1 . . . QRoPE,H] = XDqVq

KRoPE = XDk

The choice to share the key embedding between heads is deliberate (to reduce the cache size). The final query and
key heads are redefined to be sQh = [Qh R(QRoPE,h)], sKh = [Kh R(KRoPE)] ∈ RT×(d+p) where Qh,Kh ∈ RT×d are
the same up-projections in (8). (Attention only cares about the query-key scores; their dimensions are irrelevant.)
With this definition, the query-key scores take the form

sQh
sK⊤
h = QhK

⊤
h +R(QRoPE,h)R(KRoPE)

⊤

so we can compute the first term using the absorption trick as before. The second term takes care of relative
positional encoding. The cache size is now T (m+ p) to additionally store KRoPE ∈ Rp.

References

[1] Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y., Lebron, F., and Sanghai, S. (2023). Gqa: Training
generalized multi-query transformer models from multi-head checkpoints. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing , pages 4895–4901.

[2] Dao, T. (2024). Flashattention-2: Faster attention with better parallelism and work partitioning. In The Twelfth
International Conference on Learning Representations.

[3] Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. (2022). Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in Neural Information Processing Systems, 35, 16344–16359.

[4] Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., and Hoefler, T. (2021). Data movement is all you need: A case
study on optimizing transformers. Proceedings of Machine Learning and Systems, 3, 711–732.

[5] Jang, H., Kim, J., Jo, J.-E., Lee, J., and Kim, J. (2019). Mnnfast: A fast and scalable system architecture
for memory-augmented neural networks. In Proceedings of the 46th International Symposium on Computer
Architecture, pages 250–263.

[6] Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J., Zhang, H., and Stoica, I. (2023).
Efficient memory management for large language model serving with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23, page 611–626, New York, NY, USA. Association for
Computing Machinery.

[7] Liu, A., Feng, B., Wang, B., Wang, B., Liu, B., Zhao, C., Dengr, C., Ruan, C., Dai, D., Guo, D., et al.
(2024). Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv preprint
arXiv:2405.04434 .

[8] Milakov, M. and Gimelshein, N. (2018). Online normalizer calculation for softmax. arXiv preprint
arXiv:1805.02867 .

[9] Rabe, M. N. and Staats, C. (2021). Self-attention does not need o(n2) memory. arXiv preprint arXiv:2112.05682 .

[10] Shazeer, N. (2019). Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150 .

[11] Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. (2024). Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing , 568, 127063.

8In practice, we combine this with computing Q = [Q1 . . . QH] and Z by [Q QRoPE] = XDq
sUq and [Z KRoPE] = X sDkv using the

parameters sUq ∈ Rm×(d+Hp) (i.e., [Uq Vq]) and sDkv ∈ Rm×(d+p) (i.e., [Dkv Dk]).

6

A Broadcasting Notation

We use the following binary operators for broadcasting: elementwise addition ⊕, elementwise subtraction ⊖, el-
ementwise division ⊘, elementwise multiplication ⊛, elementwise division ⊘, pairwise maximum max, matrix
multiplication matmul. If broadcasting is not needed, we use the standard mathematical notation (e.g., a matrix
A ∈ Rm×n divided by a constant c ∈ R is written as A

c ∈ Rm×n, standard matrix multiplication between A ∈ Rm×n

and B ∈ Rn×p is written as AB ∈ Rm×p). Remember the rules of broadcasting (poet: Sasha Rush):

For example, if A ∈ R9×1×3 and B ∈ R8×1, the result C ← A ⊕ B ∈ R9×8×3 contains Ci,j,k = Ai,1,k + Bj,1;
C ← max(A,B) ∈ R9×2×3 contains Ci,j,k = max(Ai,1,k, Bi,j,1). Matrix multiplication broadcasts over dimensions
excluding the last two: if A ∈ R9×1×3×2 and B ∈ R8×2×4, the result C ← matmul(A,B) ∈ R9×8×3×4 contains
matrices Ci,j = Ai,1Bj ∈ R3×4 where tensors are sliced left to right. We write boldfaced A.max(i) and A.sum(i)
to denote the maximum and summation along the i-th axis of A. When no axis is provided, all axes are used. We
keep the collapsed dimension to preserve the number of dimensions. For example, if A ∈ R3×5×2, then A.max(3) ∈
R3×5×1. See Appendix B for an overview of how tensors are stored in memory.

B How Tensors Are Stored in Memory

B.1 Memory Tape

Conceptually, memory (of either CPU or GPU) can be viewed as a long sequence (“tape”) of bytes. The CPU
memory (RAM) is managed by the operating system; the GPU memory is managed by the GPU itself. Modern
addressing systems are 64-bit, yielding 264 addressable bytes (i.e., 16 billion GBs of theoretically possible memory
size). A pointer is the index on the memory tape, representing the unique address of the referred byte (e.g., the
pointer value 0xffe2ac6c refers to the 4,293,045,356-th byte in hexadecimal notation).

In this section only, we assume tensor indexing from 0 for convenience. We use the standard range notation
range(n) = [0, 1, . . . , n− 1]. We can stride by the number of bytes needed for the considered data type to address
values (stored contiguously in memory) in the data type. For instance, if u = (u0, u1, . . . , u7) is a vector of 8
float32 numbers, and uptr is a pointer to u, the address of the i-th element ui is

address(ui) = uptr + sizeof(float32)i ∀i ∈ range(8)

where sizeof(float32) = 4. In languages like Triton, the data loading functions automatically take care of index
scaling for the considered data type (e.g., ui = load(uptr + i) performs scaling under the hood). Thus for our
purposes, we will view memory as a tape of floats, even though each float takes up 4 bytes.

B.2 Flattening

To store multi-dimensional tensors in memory, they must be flattened. Two popular schemes are (i) row-major
(NumPy, PyTorch) and (ii) column-major (Matlab, Fortran). For instance, the matrix A = [[a1,1, a1,2]; [a2,1, a2,2]] ∈
R2×2 is flattened as [a1,1, a1,2, a2,1, a2,2] ∈ R4 under row-major ordering and [a1,1, a2,1, a1,2, a2,2] ∈ R4 under column-
major ordering. They have different implications in efficiency, but we will assume row-major. If we have a 3-
dimensional tensor like A ∈ Rm×n×p at Aptr, the value Ai,j,k can be accessed as9

Ai,j,k = load(Aptr + (np)i+ (p)j + k) ∀i ∈ range(m), j ∈ range(n), k ∈ range(p)

9Using broadcasting, we can load the entire tensor as

A = load(Aptr ⊕ (n× p× range(m)).view(m, 1, 1)⊕ (p× range(n)).view(1, n, 1)⊕ (range(p)).view(1, 1, p))

7

https://github.com/srush/Tensor-Puzzles?tab=readme-ov-file

The multipliers of the axes (here, (np, p, 1)) are called strides. The stride of an axis specifies how many values in
the memory tape to skip over to reach the next element along that axis (e.g., we need to skip over np floats to get
to the next matrix slice in A). We can check the strides of a tensor in PyTorch like this:

>>> x = torch.tensor([[1, 2, 3], [4, 5, 6]])

>>> x.stride() # (3, 1)

B.3 Contiguity and Memory-Free Tensor Operations

A tensor is called contiguous if its elements are accessed sequentially in memory without gaps when we traverse it
in the order of increasing axis. More formally, a tensor A ∈ Rd1×···×dm with memory strides (s1 . . . sm) is contiguous
iff sm = 1 and si = di+1×si+1.

10 Note that this implies s1 ≥ · · · ≥ sm. Any tensor is contiguous when first created.
Contiguity is important for performance, e.g., CPUs and GPUs are optimized for sequential memory accesses (e.g.,
cache locality, prefetching mechanisms).

If the tensor is contiguous, we can freely change its strides by the view operator, thereby merging or spliting
neighboring dimensions without making a copy or losing contiguity (by setting the strides as sm = 1 and si =
di+1 × si+1). No copy of x is made below and y is contiguous.

>>> x = torch.arange(12) + 1 # x.stride() => (1,)

>>> x

tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

>>> y = x.view(2, 2, 3) # y.stride() => (6, 3, 1)

>>> y

tensor([[[1, 2, 3],

[4, 5, 6]],

[[7, 8, 9],

[10, 11, 12]]])

There are memory-free tensor operations that yield non-contiguous tensors. Transpose is a classical example. It
is easy to see that transposing two axes corresponds to switching two strides. Thus no copy of x is made below,
but y is not contiguous. In particular, we cannot view y in different shapes.11

>>> x = (torch.arange(12) + 1).view(4, 3) # x.stride() => (3, 1)

>>> x

tensor([[1, 2, 3],

[4, 5, 6],

[7, 8, 9],

[10, 11, 12]])

>>> y = x.transpose(0, 1) # y.stride() => (1, 3), non-contiguous

>>> y

tensor([[1, 4, 7, 10],

[2, 5, 8, 11],

[3, 6, 9, 12]])

>>> x.view(12) # Fine

tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

>>> y.view(12) # Error!

>>> y.reshape(12) # Returns a copy in contiguous memory

tensor([1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 12])

Another example is expand, which expands singleton dimensions to larger sizes without making a copy of the
tensor. This is achieved by setting their strides to 0, thereby “staying put” while striding (i.e., repeat). This also
makes the tensor non-contiguous.

10This way, the last axis is contiguous; the axis i striding the entire contiguous axis i+ 1 in a row-major fashion is contiguous.
11If we wish to view a non-contiguous tensor as a different shape in PyTorch, we can use the shortcut reshape which creates a copy

if non-contiguous.

8

>>> x = (torch.arange(12) + 1).view(1, 12) # x.stride() => (12, 1)

>>> x

tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]])

>>> y = x.expand(3, 12) # y.stride() => (0, 1)

>>> y # Non-contiguous

tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]])

Finally, some operations must make a copy of the input. For instance, concatenating two input tensors A,B along a
specified dimension i (i.e., cat(A,B, i)) must make a copy of A and B, since they may reside in completely different
locations in memory, making it impossible to stride over them.

C A Quick Review of Backprop

A loss L ∈ R on a batch is the final node of a DAG whose root nodes are inputs and parameters; internal nodes are
hidden states. The goal is to compute the gradient of L with respect to all nodes. A node x ∈ Rd affects L only
through its children yk = fk(x) ∈ Rdk where fk : Rd → Rdk is some differentiable function. By the chain rule

∂L

∂x
=

K∑
k=1

(
∂yk
∂x

)⊤
∂L

∂yk
(9)

where (∂yk

∂x)⊤ ∈ Rd×dk is the (transposed) Jacobian of fk with respect to x (i.e., (∂yk

∂x)⊤i,j =
∂yk,j

∂xi
).12 Backprop

computes (9) for all nodes by traversing the DAG from L in a reverse topological order and at each node accumulating
the Jacobian-gradient product to all its parents’ gradient slots (initialized to zeros). This works because of the DAG
structure. In the example, before reaching the node x, we will have finished accumulating ∂L

∂x (thus the value will
be correct):

x

d

y1

d1

y2 d2

L

1

f1

f2

∂L
∂θ

∂L
∂x

∂L
∂y1

∂L
∂y2

∂L
∂L = 1

(∂y1

∂x)⊤ ∂L
∂y1

(∂y2

∂x)⊤ ∂L
∂y2

(∂y2

∂θ)⊤ ∂L
∂y2

Forward pass Backward pass

A DAG is built by predefined operators that specify (1) forward: how to map parent tensors to an output tensor,
and (2) backward: how to compute the Jacobian-gradient product for each parent. For example, if w = f(u, v) is
a node created by the operator f(x, y) = ReLU(x⊛ y) ∈ Rd with z = ∂L

∂w ∈ Rd, the backward function accumulates

(∂w∂u)
⊤z and to the gradient slot of u and (∂w∂v)

⊤z and to the gradient slot of v. In PyTorch,

12The sum over children is consistent with the “normal” chain rule without the sum if we view x as affecting L through a single node

y = (y1 . . . yK) ∈ Rd1+···+dK so that
(

∂y
∂x

)⊤
∂L
∂y

=
∑K

k=1

(
∂yk
∂x

)⊤
∂L
∂yk

.

9

class Op(torch.autograd.Function):

@staticmethod

def forward(ctx, x, y):

ctx.save_for_backward(x, y, x * y > 0)

return (x * y > 0) * x * y

@staticmethod

def backward(ctx, z): # z is the grad wrt. the node

x, y, inds = ctx.saved_tensors

return inds * y * z, inds * x * z

u = torch.randn((8,), requires_grad=True)

L = (Op.apply(u, u) + 3 * u + u.exp()).sum() # Loss

L.backward() # Computes u.grad

class Layer(torch.nn.Module):

"""Computes ReLU(w * x) with a learnable w"""

def __init__(self, d):

super().__init__()

self.w = torch.nn.Parameter(torch.empty(d))

torch.nn.init.uniform_(self.w, -0.1, 0.1)

def forward(self, x):

return Op.apply(self.w, x)

layer = Layer(8)

u = torch.randn((8,), requires_grad=True)

L = layer(layer(u)).sum() # Loss

L.backward() # Computes u.grad, layer.w.grad

C.1 Tips and Examples

Matrix multiplication. Treat a matrix of shape m× n as a vector of length mn. We can then derive

C︸︷︷︸
m×p

= A︸︷︷︸
m×n

B︸︷︷︸
n×p

: zA︸︷︷︸
m×n

← zA + zC︸︷︷︸
m×p

B⊤︸︷︷︸
p×n

zB︸︷︷︸
n×p

← zB + A⊤︸︷︷︸
n×m

zC︸︷︷︸
m×p

Independent dimensions. If the dimensions along an axis are independent, the Jacobian is diagonal and the
backward function can treat the dimensions as independent transformations. In the previous example, we had

t = ReLU(x⊛ y) ⇔ ti = max(0, xiyi) : zx,i ← zx,i + 1(xiyi > 0)yizt,i zy,i ← zy,i + 1(xiyi > 0)xizt,i

The independent transformations can be multi-dimensional, e.g., batched matrix multiplication

C︸︷︷︸
N×m×p

= matmul(A︸︷︷︸
N×m×n

, B︸︷︷︸
N×n×p

) : zA︸︷︷︸
N×m×n

← zA +matmul(zC︸︷︷︸
N×m×p

, B.transpose(2, 3)︸ ︷︷ ︸
N×p×n

)

Softmax. If p = softmax (x) ∈ Rd, we can verify
∂pj

∂xi
= pi(1(i = j)− pj) which implies

zx,i ← zx,i + pizp,i −

 d∑
j=1

pjzp,j

 pi ⇔ zx ← zx + p⊛ zp − (p⊛ zp).sum() p (10)

The shifted softmax p = softmax (x− x.max()) ∈ Rd has the same backward function (10) (hint: the gradient wrt.
x.max() vanishes by the property of softmax). The row-wise softmax P = X.softmax(2) ∈ RN×d where we apply
(shifted) softmax over the rows of X ∈ RN×d independently is then

zX ← zX + P ⊛ zP − (P ⊛ zP) .sum(2)︸ ︷︷ ︸
N×1

⊛ P︸︷︷︸
N×d

= zX + P ⊛ (zP ⊖ (P ⊛ zP) .sum(2)) (11)

D Further Optimization on FlashAttention

FlashAttention-2 [2] first notes that the incremental updates in FlashForward telescope and allow us to simplify
the calculation. Assume a single batch B = 1 for simplicity so that we update O(0) ← 0T×d, O(1), . . . , O(C) for C
chunks. The incremental update is of the form (by v−1 we mean elementwise inversion v−1

i = 1/vi):

O(j) = (π(j))−1 ⊛
(
π(j−1) ⊛ u(j) ⊛O(j−1) +BjVj

)
for some u(j) ∈ RT×1 and Bj ∈ RT×Λ. We see that

O(1) = (π(1))−1 ⊛B1V1

O(2) = (π(2))−1 ⊛
(
u(2) ⊛B1V1 +B2V2

)
O(3) = (π(3))−1 ⊛

(
u(3) ⊛ u(2) ⊛B1V1 + u(3) ⊛B2V2 +B3V3

)
...

10

Thus we can instead maintain G(0) ← 0T×d, G(j) = u(j)G(j−1) + BjVj , finally setting O(C) = (π(C))−1G(C). This
saves us O(CT) FLOPs. Next, we note that we do not need to save both c, π ∈ RT×1 in the forward pass, since in
the backward pass we only compute

Pj = exp (Aj ⊖ c)⊘ π = exp(Aj ⊖ (c+ log π))

So we can only save ξ := c + log π ∈ RT×1, saving HBM access by O(T). Finally, we move the embarrassingly
parallel batch axis (i.e., i = 1 . . . B) from the inner loop to the outer loop for better parallelization. This gives the
forward function of FlashAttention-2. Note that writing to Oi has moved out of the inner loop.

FlashForward2

1. For i = 1 . . . B: (embarrassingly parallel)

(a) Load Qi, Oi ∈ RΓ×d to SRAM.

(b) Initialize ci ← −∞Γ×1, πi ← 0Γ×1, Gi ← 0Γ×d in SRAM.

(c) For j = 1 . . . C:

i. Load Kj , Vj ∈ RΛ×d to SRAM.

ii. Compute

Ai,j ←
QiK

⊤
j√
d
∈ RΓ×Λ cnewi ← max (ci, Ai,j .max(2)) ∈ RΓ×1

πnew
i ← exp(ci − cnewi)⊛ πi + exp(Ai,j ⊖ cnewi).sum(2) ∈ RΓ×1

Gnew
i ← exp(ci − cnewi)⊛Gi + exp(Ai,j ⊖ cnewi)Vj ∈ RΓ×d

iii. Update ci ← cnew
i , πi ← πnew

i , Gi ← Gnew
i .

(d) Write Oi ← Gi ⊘ πi ∈ RΓ×d and ξi ← ci + log πi ∈ RΓ×1 to HBM.

2. Return O ∈ RT×d in HBM.

The backward function remains the same except that the attention matrix uses ξi (i.e., Pi,j ← exp(
QiK

⊤
j√

d
− ξi)).

While the outer loop is not embarrassingly parallel, atomic adds (hardware-level locking mechanism) are used
to parallelize it. FlashAttention-2 includes many other optimization tricks. One is exploiting causal masking by
realizing that we can skip a half of the tiles (furthermore, for the computed batch, only the last chunk needs
masking). Another is work partitioning between “warps” (groups of 32 threads within a thread block); Q is split
across warps while K,V are shared to reduce inter-warp communication. FlashAttention-3 further refines the
algorithm by using GPU-architecture-specific techniques for asynchronous execution and quantization.

11

	Overview
	Memory Scalability
	Runtime Latency
	Inference Latency
	Inference Throughput

	FlashAttention
	Review of Standard Attention
	Forward
	Backward

	KV Cache Reduction
	Grouped Query Attention (GQA)
	Multi-Head Latent Attention (MLA)
	MLA with RoPE

	Broadcasting Notation
	How Tensors Are Stored in Memory
	Memory Tape
	Flattening
	Contiguity and Memory-Free Tensor Operations

	A Quick Review of Backprop
	Tips and Examples

	Further Optimization on FlashAttention

