
Approximate CCA

Karl Stratos

1 CCA Projections

Let X ∈ Rn1 and Y ∈ Rn2 be two random variables. Define covariance matrices CXY ∈ Rn1×n2 , CXX ∈
Rn1×n1 , and CY Y ∈ Rn2×n2 where [CXY ]i,j = Cov(Xi, Yj), [CXX ]i,j = Cov(Xi, Xj), and [CY Y ]i,j =
Cov(Yi, Yj). We assume that CXX and CY Y are invertible. Given a dimension m ≤ min(n1, n2), the

goal is to find projections Am ∈ Rn1×m and Bm ∈ Rn2×m such that the correlation between A>mX ∈ Rm
and B>mY ∈ Rm is maximized.

CCA finds such projections in three steps. First, it “whitens” CXY to obtain Ω ∈ Rn1×n2 :

Ω = C
−1/2
XX CXYC

−1/2
Y Y

Then it performs an SVD to find the top m left and right singular vectors of Ω. Finally, it de-whitens
the singular vectors to recover the projection matrices. The algorithm is as follows:

CCA-PROJECTIONS
Input: covariance matrices CXY ∈ Rn1×n2 , CXX ∈ Rn1×n1 , CY Y ∈ Rn2×n2 , CCA dimension m.
Output: CCA projections Am ∈ Rn1×m and Bm ∈ Rn2×m

1. (Whitening) Ω← C
−1/2
XX CXYC

−1/2
Y Y ∈ Rn1×n2

2. (SVD) Perform an SVD to decompose Ω = UΛV >. Let Um ∈ Rn1×m and Vm ∈ Rn2×m be the
first m columns of U and V , respectively.

3. (De-Whitening) Return Am ← C
−1/2
XX Um and Bm ← C

−1/2
Y Y Vm

In practice, we will have N samples (x(1),y(1)) . . . (x(N),y(N)) ∈ X × Y and derive empirical estimates

ĈXY ∈ Rn1×n2 , ĈXX ∈ Rn1×n1 , and ĈY Y ∈ Rn2×n2 of the covariance matrices where

[ĈXY ]i,j =
1

N

N∑
k=1

(x
(k)
i − µX

i )(y
(k)
j − µY

j )

[ĈXX ]i,j =
1

N

N∑
k=1

(x
(k)
i − µX

i )(x
(k)
j − µX

j )

[ĈY Y ]i,j =
1

N

N∑
k=1

(y
(k)
i − µY

i )(y
(k)
j − µY

j )

with the sample means µX = 1
N

∑
k x

(k) and µY = 1
N

∑
k y

(k).

2 Approximate CCA Projections

When dimensions n1 and n2 are large, the following aspects of the above approach can be challenging:

• Storing CXY ∈ Rn1×n2 , CXX ∈ Rn1×n1 , and CY Y ∈ Rn2×n2

• Calculating Ω = C
−1/2
XX CXYC

−1/2
Y Y

• Performing an SVD on Ω

1



The covariance matrices are not necessarily sparse, so they may be too large to store in memory. These
large matrices also make whitening difficult, since we must compute the inverse square root of CXX

and CY Y and multiply by CXY . Finally, a conventional SVD may be too computationally expensive to
perform on Ω since it has time and storage complexity superlinear in n1 and n2.

The algorithm below, an approximate version of CCA-PROJECTIONS, bypasses these difficulties.
This algorithm only takes a (sparse) matrix, two count vectors, and a few parameter values as the input
and returns the CCA projections as the output.

APPROXIMATE-CCA-PROJECTIONS
Input:

◦ Co-occurrence matrix OXY of size n1 × n2 (sparse)

◦ Count vectors cX of length n1 and cY of length n2

◦ Number of samples N

◦ CCA dimension m

◦ Pseudocount κ (for smoothing), oversampling parameter l, number of power iterations q

Output: approximate CCA projections Âm ∈ Rn1×m and B̂m ∈ Rn2×m

1. (Whitening) Compute diagonal matrices Ĉ
−1/2
XX ∈ Rn1×n1 and Ĉ

−1/2
Y Y ∈ Rn2×n2 where

[Ĉ
−1/2
XX ]i,i =

1√
cX
i +κ

N −
(

cX
i +κ

N

)2 [Ĉ
−1/2
Y Y ]i,i =

1√
cY
i +κ

N −
(

cY
i +κ

N

)2
and compute

Ω̂ = Ĉ
−1/2
XX

(
OXY

N
−
(
cX

N

)(
cY

N

)>)
Ĉ
−1/2
Y Y

2. (SVD) [Ûm, V̂m]← APPROXIMATE-SVD(Ω̂,m, l, q)

3. (De-Whitening) Return Âm ← Ĉ
−1/2
XX Ûm and B̂m ← Ĉ

−1/2
Y Y V̂m

The above algorithm makes use of a randomized approximate SVD, given below.

APPROXIMATE-SVD
Input: matrix M ∈ Rn1×n2 , CCA dimension m, oversampling parameter l, number of power
iterations q
Output: approximate top m left and right singular vectors of M : Ûm ∈ Rn1×m and V̂m ∈ Rn2×m

• Find an orthonormal “basis” Q ∈ Rn1×(m+l) of M such that M ≈ QQ>M .

– Make a random Θ ∈ Rn2×(m+l) with entries drawn from the standard normal distribution.

– (Power Iteration) Let Y = (MM>)qMΘ ∈ Rn1×(m+l).

– Find the orthonormal basis Q of the range of Y by performing a QR-decomposition on
Y = QR.

• Obtain a smaller matrix B = Q>M ∈ R(m+l)×n2 .

• Perform an SVD to have the decomposition B = ŨΛV̂ >, and let Ũm ∈ R(m+l)×m and V̂m ∈
Rn2×m be the first m columns of Ũ and V̂ , respectively.

• Return Ûm = QŨm ∈ Rn1×m and V̂m.

2



3 Justification of the Approximation

3.1 Approximate Whitening

We want to estimate Ω = C
−1/2
XX CXYC

−1/2
Y Y without explicitly computing CXY , C

−1/2
XX , or C

−1/2
Y Y . To do

this, we make the following key assumptions on the data:

Assumption 1. The variables are binary: X ∈ {0, 1}n1 and Y ∈ {0, 1}n2 . This is mild in that people
typically use binary features to encode the data.

Assumption 2. Each dimension is independent: Cov(Xi, Xj) = 0 and Cov(Yi, Yj) = 0 for i 6= j. This
is significantly stronger but reasonable if the features are more or less independent of each other.

Under assumption 2, CXX and CY Y are diagonal where [CXX ]i,j = Var(Xi) and [CY Y ]i,j = Var(Yi) if

i = j and 0 otherwise. Therefore, their inverse square roots C
−1/2
XX and C

−1/2
Y Y also have a simple diagonal

form. Now each entry of Ω = C
−1/2
XX CXYC

−1/2
Y Y can be computed analytically as

[Ω]i,j =
Cov(Xi, Yj)√

Var(Xi)
√

Var(Yj)
(1)

Note that this is impossible in general, i.e., we used the fact that C
−1/2
XX and C

−1/2
Y Y are diagonal. To

estimate this Ω from samples (x(1),y(1)) . . . (x(N),y(N)) ∈ X × Y , compute a co-occurrence matrix OXY

of size n1 by n2, count vectors cX of length n1 for X and cY of length n2:

[OXY ]i,j =

N∑
k=1

x
(k)
i y

(k)
j [cX ]i =

N∑
k=1

x
(k)
i [cY ]i =

N∑
k=1

y
(k)
i

Because X and Y are binary, OXY will typically be a very sparse matrix that is easy to store. Then the
emprical estimate of Cov(Xi, Yj), Var(Xi), and Var(Yj) will have the following form.

Ĉov(Xi, Yj) = Ê[XiYj ]− Ê[Xi]Ê[Yj ]

=
[OXY ]i,j

N
−
(
cXi
N

)(
cYj
N

)

V̂ar(Xi) = Ê[X2
i ]− Ê[Xi]

2 =
cXi
N
−
(
cXi
N

)2

V̂ar(Yi) = Ê[Y 2
i ]− Ê[Yi]

2 =
cYi
N
−
(
cYi
N

)2

Thus we can compute each entry of matrix Ω̂, an empirical estimate of Ω in Eq. (1), as

[Ω̂]i,j =

[OXY ]i,j
N −

(
cX
i

N

)(
cY
j

N

)
√

cX
i

N −
(

cX
i

N

)2√
cY
i

N −
(

cY
i

N

)2
Step 1 of APPROXIMATE-CCA-PROJECTIONS computes this Ω with one difference. It adds
a pseudocount κ to the count vectors cX and cY . This has an effect of smoothing the inverse variance
estimates, and can be important in practice.

3.2 Approximate SVD

Algorithm APPROXIMATE-SVD performs an approximate SVD on a matrix M ∈ Rn1×n2 as in
Halko et al. (2011). The basic idea is that we can use a randomized approach to rapidly create a “thin”
orthonormal matrix Q whose range approximates the range of M , reduce the size of M with Q, do an SVD
on this smaller matrix, and recover the components in the original space via the orthogonal projection
formed by QQT .

3



We must provide two additional parameters, l and q. l is the number of excessive dimensions on top of
m in approximating Q, in order to handle the noise in approximation—this can be seen as an instance
of oversampling. q is the number of iterations for the power iteration algorithm. The power iteration
is used to amplify the decay in the singular spectrum of M , to make sure Q is able to capture most of
the range of M with a smaller number of dimensions. Small values suffice in most cases, e.g., l = 5 and
q = 1.

For more details of the algorithm, please refer to the referenced paper.

Acknowledgement. This approach was developed by many practitioners including Jenny Finkel and
Dean Foster.

4 Appendix

4.1 Practical Implementation

In the first step of APPROXIMATE-CCA-PROJECTIONS, we naively store the n1 × n2 matrix
Ω̂ which is now dense. A practical trick to get around this problem is to store instead a sparse matrix
M ∈ Rn1×n2 and vectors v ∈ Rn1 and w ∈ Rn2 such that Ω̂ = M −vw>. We maintain this expression of
Ω̂ until after we have reduced the size of the matrix in APPROXIMATE-SVD. See the matlab code
shown below.

% Approximate CCA

%

% Input:

% countsXY = (sparse) cooccurrence counts for X and Y

% countsX = counts for X

% countsY = counts for Y

% numData = number of samples

% ccaDim = CCA dimension

% extraDim = oversampling parameter

% powerNum = number of power iterations

% kappa = smoothing term for inverse variance

%

% Output:

% A = projection matrix for X

% B = projection matrix for Y

% s = top m singular values of Omega

%_______________________________________________

function [A B s] = approx_cca(countsXY, countsX, countsY, numData, ...

ccaDim, extraDim, powerNum, kappa)

% whitening

invsqrt_covX = get_invsqrt_cov(countsX, numData, kappa);

invsqrt_covY = get_invsqrt_cov(countsY, numData, kappa);

% maintain sparseness of Omega=XY-X*Y’

XY = (1/numData) * invsqrt_covX * countsXY * invsqrt_covY; % sparse

X = (1/numData) * invsqrt_covX * countsX;

Y = (1/numData) * invsqrt_covY * countsY;

% do an SVD on Omega

[U,s,V] = approx_svd(XY, X, Y, ccaDim, extraDim, powerNum);

% de-whitening

A = invsqrt_covX * U;

B = invsqrt_covY * V;

4



function [invsqrt_cov] = get_invsqrt_cov(counts, numData, kappa)

inc_counts = counts + kappa; % smoothing with kappa

mean = inc_counts/numData;

var = mean - mean.^2;

numFeat = length(counts);

invsqrt_cov = sparse(1:numFeat, 1:numFeat, var.^(-.5));

function [U,s,V] = approx_svd(XY, X, Y, ccaDim, extraDim, powerNum)

% find orth Q such that XY-X*Y’ is close to QQ’(XY-X*Y’)

numFeat2 = length(Y);

Theta = randn(numFeat2, ccaDim + extraDim);

reduced = XY*Theta - X*(Y’*Theta);

for i=1:powerNum % power iteration

t1 = XY*(XY’*reduced);

t2 = XY*(Y*(X’*reduced));

t3 = X*(Y’*(XY’*reduced));

t4 = X*(Y’*(Y*(X’*reduced)));

reduced = t1-t2-t3+t4;

end

[Q, ~] = qr(reduced,0);

% obtain a smaller matrix and do a thin svd

B = Q’*XY - (Q’*X)*Y’;

[U_,s,V] = svd(B,’econ’);

U_ = U_(:,1:ccaDim);

s = diag(s(1:ccaDim,1:ccaDim));

V= V(:,1:ccaDim);

U = Q*U_; % bring U back to the original dimension

4.2 Projecting Data

We are ultimately interested in the reduced dimensional variables X = A>mX ∈ Rm and Y = B>mY ∈ Rm.
Once we compute the CCA projections Âm ∈ Rn1×m and B̂m ∈ Rn2×m from APPROXIMATE-CCA-
PROJECTIONS, suppose we wish to compute the CCA representation x ∈ Rm of a sample x ∈ {0, 1}n1

in the first view. In a proper approach, we will first center x by subtracting the sample means µX ∈ Rn1

before projection:

x = Â
>
m(x− µX) = Â

>
mx− Â

>
mµ

X

However, since Â
>
mµ

X is constant for all data points x, it does not make much difference in practice if

we just directly project without centering: x = Â
>
mx. In that case, x ∈ Rm (x being a binary vector) is

simply a linear combination of the rows of Âm.

References

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. In SIAM Rev.

5


