The Alias Method*

Karl Stratos

Lemma. Let $u \in \mathbb{R}^n_{\geq 0}$ with $C = ||u||_1 / n$. We can find $v \in [0, C]^n$ and $\pi \in \{0, 1 \dots n\}^n$ such that $\pi_i = 0$ iff $v_i = C$ and

$$u_i = v_i + \sum_{j=1}^n \left[[\pi_j = i] \right] (C - v_j) \tag{1}$$

Proof. If n = 1, setting $v_1 = u_1 = C$ and $\pi_1 = 0$ satisfies (1). If n > 1,

1. Find $k \in \{1 \dots n\}$ with $u_k \leq C$ (which must exist): without loss of generality assume k = n.

2. Find $l \neq k$ with $u_l \geq C$ (which must exist): without loss of generality assume l = n - 1.

Define $\bar{u} \in \mathbb{R}^{n-1}_{\geq 0}$ by

$$\bar{u}_i = \begin{cases} u_i & \text{if } i < n-1 \\ u_{n-1} - (C - u_n) & \text{if } i = n-1 \end{cases}$$

Note that $\bar{u}_{n-1} \ge 0$ since $u_{n-1} \ge C$ and $C - u_n \le C$. Also, $C = ||\bar{u}||_1 / (n-1)$ since $||\bar{u}||_1 = ||u||_1 - u_n - (C - u_n) = C(n-1)$. By an inductive step, we can find $\bar{v} \in [0, C]^{n-1}$ and $\bar{\pi} \in \{0, 1 \dots n-1\}^{n-1}$ such that

$$\bar{v}_i = \bar{u}_i - \sum_{j=1}^{n-1} \left[\left[\bar{\pi}_j = i \right] \right] (C - \bar{v}_j)$$

Define $v \in [0, C]^n$ and $\pi \in \{0, 1 \dots n\}^n$ by

$$v_i = \begin{cases} \bar{v}_i & \text{if } i < n \\ u_n & \text{if } i = n \end{cases} \qquad \qquad \pi_i = \begin{cases} \bar{\pi}_i & \text{if } i < n \\ n - 1 & \text{if } i = n \end{cases}$$

We verify that this construction satisfies (1) for each index.

- (i = n): $v_n = u_n$ and $\pi_l \neq n$ for all $l \in \{1 \dots n\}$.
- (i = n 1):

$$\begin{aligned} v_{n-1} &= \bar{v}_{n-1} \\ &= \bar{u}_{n-1} - \sum_{j=1}^{n-1} \left[\left[\bar{\pi}_j = n - 1 \right] \right] (C - \bar{v}_j) \\ &= u_{n-1} - (C - u_n) - \sum_{j=1}^{n-1} \left[\left[\pi_j = n - 1 \right] \right] (C - \bar{v}_j) \\ &= u_{n-1} - \sum_{j=1}^{n} \left[\left[\pi_j = n - 1 \right] \right] (C - v_j) \end{aligned}$$

^{*}A formalization of the write-up by Schwarz (2020).

• (i < n - 1):

$$v_{i} = \bar{v}_{i}$$

$$= \bar{u}_{i} - \sum_{j=1}^{n-1} [[\bar{\pi}_{j} = i]] (C - \bar{v}_{j})$$

$$= u_{i} - \sum_{j=1}^{n-1} [[\pi_{j} = i]] (C - v_{j})$$

$$= u_{i} - \sum_{j=1}^{n} [[\pi_{j} = i]] (C - v_{j})$$

The alias method. Let $p \in \Delta^{n-1}$. By the lemma using u = np (so C = 1), we can construct $v \in [0,1]^n$ and $\pi \in \{0,1...n\}^n$ ("alias table") such that

$$p_{i} = \frac{1}{n} \left(v_{i} + \sum_{j=1}^{n} \left[[\pi_{j} = i] \right] (1 - v_{j}) \right)$$
$$= \frac{1}{n} \sum_{j=1}^{n} v_{j} \left[[j = i] \right] + (1 - v_{j}) \left[[\pi_{j} = i] \right]$$
$$= \Pr_{\substack{j \sim \text{Unif}(\{1 \dots n\})\\x \sim \text{Ber}(v_{j})}} \left((x = 1 \land j = i) \lor (x = 0 \land \pi_{j} = i) \right)$$

Thus assuming the knowledge of such v, π and the ability to sample from a uniform distribution over n items and the Bernoulli distribution in O(1) time (e.g., by applications of sampling from a uniform real distribution), we can sample $i \sim \operatorname{Cat}(p)$ in O(1) time by sampling $j \sim \operatorname{Unif}(\{1 \dots n\}), x \sim \operatorname{Ber}(v_j)$, then setting i = j if x = 1 and $i = \pi_j$ if x = 0 (which never happens if $\pi_j = 0$).

Algorithm for constructing (v, π) . The proof of the lemma is constructive and a recursive algorithm itself. Here is an in-place iterative version of the algorithm:

FindAlias

Input: $u \in \mathbb{R}^{n}_{\geq 0}$ with $C = ||u||_{1}/n$ Output: $v \in [0, C]^{n}$ and $\pi \in \{0, 1 \dots n\}^{n}$ such that $\pi_{i} = 0$ iff $v_{i} = C$ and $u_{i} = v_{i} + \sum_{j=1}^{n} [[\pi_{j} = i]] (C - v_{j})$ Runtime: $O(n^{2})$ or $O(n \log n)$ 1. Initialize $v, \pi \in \mathbb{R}^{n}$ arbitrarily and set $\mathcal{I} \leftarrow \{1 \dots n\}$. 2. While $\mathcal{I} \neq \emptyset$ (a) If $\mathcal{I} = \{i\}$ (we must have $u_{i} = C$), set $v_{i} \leftarrow C$, $\pi_{i} \leftarrow 0$, and $\mathcal{I} \leftarrow \emptyset$. (b) Else, search for $k \in \{i \in \mathcal{I} : u_{i} \leq C\}$ $l \in \{i \in \mathcal{I} : i \neq k, u_{i} \geq C\}$ and set $v_{k} \leftarrow u_{k}, \pi_{k} \leftarrow l, u_{l} \leftarrow u_{l} - (C - u_{k}), \text{ and } \mathcal{I} \leftarrow \mathcal{I} \setminus \{k\}.$ (2)

A naive implementation of **FindAlias** yields a $O(n^2)$ runtime because of the O(n) search in (2–3).¹ But we observe that we do not need to search at all if we maintain a partition of indices based on the threshold C. This is first proposed by Vose (1991) and yields the O(n)-time algorithm shown below (with some numerical stability tricks):

¹This can be improved to $O(\log n)$ by using a binary search tree.

FindAliasFast Input: $u \in \mathbb{R}_{\geq 0}^{n}$ with $C = ||u||_{1}/n$ Output: $v \in [0, C]^{n}$ and $\pi \in \{0, 1 \dots n\}^{n}$ such that $\pi_{i} = 0$ iff $v_{i} = C$ and $u_{i} = v_{i} + \sum_{j=1}^{n} [[\pi_{j} = i]] (C - v_{j})$ Runtime: O(n)1. Initialize $v, \pi \in \mathbb{R}^{n}$ arbitrarily and set $S \leftarrow \{i \in \{1 \dots n\} : u_{i} < C\}$ $\mathcal{L} \leftarrow \{i \in \{1 \dots n\} : u_{i} \geq C\}$ 2. While $S \neq \emptyset$ and $\mathcal{L} \neq \emptyset$ (a) Select arbitrary $k \in S$. Set $v_{k} \leftarrow u_{k}$ and $S \leftarrow S \setminus \{k\}$. (b) Select arbitrary $l \in \mathcal{L}$. Set $\pi_{k} \leftarrow l$ and $\mathcal{L} \leftarrow \mathcal{L} \setminus \{l\}$. (c) Set $u_{l} \leftarrow (u_{l} + u_{k}) - C$. If $u_{l} < C$, set $S \leftarrow S \cup \{l\}$; else, set $\mathcal{L} \leftarrow \mathcal{L} \cup \{l\}$. 3. For all $l \in \mathcal{L}$ (we must have $u_{l} = C$), set $v_{l} \leftarrow C$ and $\pi_{l} \leftarrow 0$. 4. For all $k \in S$ (only nonempty because of numerical instability, so this means $u_{k} = C$), set $v_{k} \leftarrow C$ and $\pi_{k} \leftarrow 0$.

References

Schwarz, K. (accessed June 21, 2020). Darts, Dice, and Coins: Sampling from a Discrete Distribution. https://www.keithschwarz.com/darts-dice-coins.

Vose, M. D. (1991). A linear algorithm for generating random numbers with a given distribution. *IEEE Transactions on software engineering*, 17(9), 972–975.