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Lemma. Let u ∈ Rn
≥0 with C = ||u||1 /n. We can find v ∈ [0, C]n and π ∈ {0, 1 . . . n}n such that πi = 0 iff vi = C

and

ui = vi +

n∑
j=1

[[πj = i]] (C − vj) (1)

Proof. If n = 1, setting v1 = u1 = C and π1 = 0 satisfies (1). If n > 1,

1. Find k ∈ {1 . . . n} with uk ≤ C (which must exist): without loss of generality assume k = n.

2. Find l 6= k with ul ≥ C (which must exist): without loss of generality assume l = n− 1.

Define ū ∈ Rn−1
≥0 by

ūi =

{
ui if i < n− 1

un−1 − (C − un) if i = n− 1

Note that ūn−1 ≥ 0 since un−1 ≥ C and C−un ≤ C. Also, C = ||ū||1 /(n−1) since ||ū||1 = ||u||1−un− (C−un) =

C(n− 1). By an inductive step, we can find v̄ ∈ [0, C]n−1 and π̄ ∈ {0, 1 . . . n− 1}n−1 such that

v̄i = ūi −
n−1∑
j=1

[[π̄j = i]] (C − v̄j)

Define v ∈ [0, C]n and π ∈ {0, 1 . . . n}n by

vi =

{
v̄i if i < n
un if i = n

πi =

{
π̄i if i < n

n− 1 if i = n

We verify that this construction satisfies (1) for each index.

• (i = n): vn = un and πl 6= n for all l ∈ {1 . . . n}.

• (i = n− 1):

vn−1 = v̄n−1

= ūn−1 −
n−1∑
j=1

[[π̄j = n− 1]] (C − v̄j)

= un−1 − (C − un)−
n−1∑
j=1

[[πj = n− 1]] (C − v̄j)

= un−1 −
n∑

j=1

[[πj = n− 1]] (C − vj)

∗A formalization of the write-up by Schwarz (2020).
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• (i < n− 1):

vi = v̄i

= ūi −
n−1∑
j=1

[[π̄j = i]] (C − v̄j)

= ui −
n−1∑
j=1

[[πj = i]] (C − vj)

= ui −
n∑

j=1

[[πj = i]] (C − vj)

�

The alias method. Let p ∈ ∆n−1. By the lemma using u = np (so C = 1), we can construct v ∈ [0, 1]n and
π ∈ {0, 1 . . . n}n (“alias table”) such that

pi =
1

n

vi +

n∑
j=1

[[πj = i]] (1− vj)


=

1

n

n∑
j=1

vj [[j = i]] + (1− vj) [[πj = i]]

= Pr
j∼Unif({1...n})

x∼Ber(vj)

((x = 1 ∧ j = i) ∨ (x = 0 ∧ πj = i))

Thus assuming the knowledge of such v, π and the ability to sample from a uniform distribution over n items and
the Bernoulli distribution in O(1) time (e.g., by applications of sampling from a uniform real distribution), we can
sample i ∼ Cat(p) in O(1) time by sampling j ∼ Unif({1 . . . n}), x ∼ Ber(vj), then setting i = j if x = 1 and i = πj
if x = 0 (which never happens if πj = 0).

Algorithm for constructing (v, π). The proof of the lemma is constructive and a recursive algorithm itself.
Here is an in-place iterative version of the algorithm:

FindAlias
Input: u ∈ Rn

≥0 with C = ||u||1 /n
Output: v ∈ [0, C]n and π ∈ {0, 1 . . . n}n such that πi = 0 iff vi = C and ui = vi +

∑n
j=1 [[πj = i]] (C − vj)

Runtime: O(n2) or O(n logn)

1. Initialize v, π ∈ Rn arbitrarily and set I ← {1 . . . n}.
2. While I 6= ∅

(a) If I = {i} (we must have ui = C), set vi ← C, πi ← 0, and I ← ∅.

(b) Else, search for

k ∈ {i ∈ I : ui ≤ C} (2)

l ∈ {i ∈ I : i 6= k, ui ≥ C} (3)

and set vk ← uk, πk ← l, ul ← ul − (C − uk), and I ← I\ {k}.

A naive implementation of FindAlias yields a O(n2) runtime because of the O(n) search in (2–3).1 But we observe
that we do not need to search at all if we maintain a partition of indices based on the threshold C. This is first
proposed by Vose (1991) and yields the O(n)-time algorithm shown below (with some numerical stability tricks):

1This can be improved to O(logn) by using a binary search tree.

2

https://en.wikipedia.org/wiki/Random_number_generation#Computational_methods


FindAliasFast
Input: u ∈ Rn

≥0 with C = ||u||1 /n
Output: v ∈ [0, C]n and π ∈ {0, 1 . . . n}n such that πi = 0 iff vi = C and ui = vi +

∑n
j=1 [[πj = i]] (C − vj)

Runtime: O(n)

1. Initialize v, π ∈ Rn arbitrarily and set

S ← {i ∈ {1 . . . n} : ui < C}
L ← {i ∈ {1 . . . n} : ui ≥ C}

2. While S 6= ∅ and L 6= ∅

(a) Select arbitrary k ∈ S. Set vk ← uk and S ← S\ {k}.
(b) Select arbitrary l ∈ L. Set πk ← l and L ← L\{l}.
(c) Set ul ← (ul + uk)− C. If ul < C, set S ← S ∪ {l}; else, set L ← L ∪ {l}.

3. For all l ∈ L (we must have ul = C), set vl ← C and πl ← 0.

4. For all k ∈ S (only nonempty because of numerical instability, so this means uk = C), set vk ← C and πk ← 0.
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