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1 Online Convex Optimization

At step t = 1, 2, . . ., we propose wt ∈ V ⊆ Rd where V is closed and convex. The enemy then chooses a convex and
differentiable loss lt : Rd → R and punishes us by lt(wt) ∈ R. Assuming T such steps, let u = argminw∈V

∑T
t=1 lt(w)

denote the best hypothesis in retrospect. We want to upper bound the total “regret” as a function of T :

T∑
t=1

lt(wt)− lt(u) ≤ B(T )

The goal is to achieve a sublinear regret bound B(T ) = o(T ), which solves stochastic convex optimization (Ap-
pendix A). A lower bound is Ω(

√
T ) (Appendix B).

1.1 Mirror Descent

Let l̂t(w) = lt(wt) + g⊤t (w − wt) where gt = ∇lt(wt). To make the minimum finite, we regularize by the Bregman
divergence Dψt

(·, wt) (Appendix D) where ψt : V → R is strictly convex and differentiable. Assuming ηt > 0, our
per-step objective is

wt+1 = argmin
w∈V

l̂t(w) +
1

ηt
Dψt

(w,wt) (1)

For instance, (1) becomes gradient descent when V = Rd and ψt(w) = 1
2 ||w||

2
2 and exponentiated gradient de-

scent when V = ∆d−1 and ψt(w) = −H(w) (Appendix E). Instead of computing (1) directly, we may perform
unconstrained minimization and project (aka. online “mirror” descent):

w̃t+1 = argmin
w∈Rd

ηt l̂t(w) +Dψt
(w,wt) = ∇ψ∗

t (∇ψt(wt)− ηtgt) (2)

wt+1 = argmin
w∈V

Dψt
(w, w̃t+1) (3)

where ψ∗
t : Rd → R is the convex conjugate of ψt (Fact F.4). It is easy to show that (1) and (3) are equal.1

1.2 General Analysis

Since (1) is the Bregman projection of wt onto V regularized by ηt l̂t, the Pythagorean theorem gives us Dψt(u,wt)+

ηt l̂t(u) ≥ Dψt(wt+1, wt) +Dψt(u,wt+1) + ηt l̂t(wt+1) (Lemma D.3), or

Dψt(u,wt)−Dψt(u,wt+1) ≥ ηt l̂t(wt+1)− ηt l̂t(u) +Dψt(wt+1, wt)

≥ ηtg⊤t (wt − u) + ηtg
⊤
t (wt+1 − wt) +

σt
2
||wt+1 − wt||2t (4)

≥ ηtg⊤t (wt − u)− ηt ||gt||t,∗ ||wt+1 − wt||t +
σt
2
||wt+1 − wt||2t (5)

≥ ηtg⊤t (wt − u) +
η2t
2σt
||gt||2t,∗ (6)

≥ ηt (lt(wt)− lt(u)) +
η2t
2σt
||gt||2t,∗ (7)

(4) assumes that ψt is σt-strongly convex with respect to some norm ||·||t. (5) uses Hölder’s inequality w⊤v ≤
||w||t ||v||t,∗ where ||·||t,∗ is the dual norm of ||·||t (Appendix L.2.1). (6) minimizes J(x) = (σt

2 x
2 − ηt ||gt||∗ x) over

x ∈ R. Finally, (7) uses the convexity of lt, i.e.,

g⊤t (wt − u) ≥ lt(wt)− lt(u)

wtu

lt(wt)-lt(u)
gt
T

 (wt-u)

1Since f(z) = Dψt (z, w̃t+1) is strictly convex and differentiable, (3) is the unique point w⋆ satisfying ∇f(w⋆)⊤(w − w⋆) ≥ 0 for

all w ∈ V (Lemma C.2). Likewise, since h(z) = ηt l̂t(z) + Dψt (z, wt) is strictly convex and differentiable, (1) is the unique point v⋆

satisfying ∇h(v⋆)⊤(w − v⋆) ≥ 0 for all w ∈ V . But ∇f(z) = ∇ψt(z)−∇ψt(w̃t+1) = ∇ψt(z)−∇ψt(wt) + ηtgt = ∇h(z).



Rearranging, we have a per-step regret bound lt(wt) − lt(u) ≤ 1
ηt

(Dψt(u,wt)−Dψt(u,wt+1)) +
ηt
2σt
||gt||2t,∗. Thus

the total regret can be bounded by

T∑
t=1

lt(wt)− lt(u) ≤
T∑
t=1

1

ηt
(Dψt

(u,wt)−Dψt
(u,wt+1)) +

T∑
t=1

ηt
2σt
||gt||2t,∗ (8)

1.3 Euclidean Analysis

(8) applies to any Bregman divergence. However, for most practical purposes we use squared Euclidean distance

Dψt
(x, y) = 1

2 ||y − x||
2
At

weighted by a “preconditioner” matrix At ≻ 0.2 It is induced by ψt(x) =
1
2 ||x||

2
At

which is

1-strongly convex wrt. ||·||At
, thus the second term of (8) becomes 1

2

∑T
t=1 ηt ||gt||

2
A−1

t
. The first term of the bound

(8) is now

T∑
t=1

1

ηt
(Dψt

(u,wt)−Dψt
(u,wt+1)) =

1

2

T∑
t=1

1

ηt

(
||wt − u||2At

− ||wt+1 − u||2At

)
=

1

2

T∑
t=1

(
1

ηt
||wt − u||2At

− 1

ηt−1
||wt − u||2At−1

)
− 1

ηT
||wT+1 − u||2AT

(9)

≤ 1

2

T∑
t=1

(
1

ηt
||wt − u||2At

− 1

ηt−1
||wt − u||2At−1

)

=
1

2

T∑
t=1

(wt − u)⊤
(

1

ηt
At −

1

ηt−1
At−1

)
(wt − u) (10)

(9) uses the dummy variables η0 =∞ and A0 = 0d×d. To get a general bound, we can apply v⊤Bv ≤ ||v||2 ||Bv||2 ≤
tr (B) ||v||22 (i.e., the consistency between the matrix spectral norm and the vector l2 norm) to (10):

1

2

T∑
t=1

(wt − u)⊤
(

1

ηt
At −

1

ηt−1
At−1

)
(wt − u) ≤

1

2

T∑
t=1

(
1

ηt
tr (At)−

1

ηt−1
tr (At−1)

)
||wt − u||22 (11)

≤
maxTt=1 ||wt − u||

2
2

2

T∑
t=1

(
1

ηt
tr (At)−

1

ηt−1
tr (At−1)

)
︸ ︷︷ ︸

Telescopes!

(12)

=
(maxTt=1 ||wt − u||

2
2)tr (AT )

2ηT
(13)

Note that step (12) also requires 1
ηt
tr (At)− 1

ηt−1
tr (At−1) ≥ 0. To ensure this, we will generally assume that

∞ =: η0 ≥ η1 ≥ η2 ≥ · · · ≥ ηT > 0 (14)

0d×d =: A0 ≺ A1 ⪯ A2 ⪯ · · · ⪯ AT (15)

If At = A across t (i.e., time-invariant preconditioning), we can avoid the lossy inequality (11) since

1

2

T∑
t=1

(wt − u)⊤
(

1

ηt
A− 1

ηt−1
A

)
(wt − u) =

1

2

T∑
t=1

(
1

ηt
− 1

ηt−1

)
||wt − u||2A

≤
maxTt=1 ||wt − u||

2
A

2

T∑
t=1

(
1

ηt
− 1

ηt−1

)

=
maxTt=1 ||wt − u||

2
A

2ηT
(16)

(16) is d-times sharper than (13) when A = Id. If we further assume that ηt = η > 0 across t (i.e., fixed learning
rate), we can make the bound still sharper (recall η0 =∞):

1

2

T∑
t=1

(wt − u)⊤
(

1

ηt
A− 1

ηt−1
A

)
(wt − u) =

||w1 − u||2A
2η

(17)

2For A ≻ 0, ||x||A =
√
x⊤Ax is a norm on Rd with ||x||A−1 as the dual norm (Appendix L.3). For the sake of simplicity, we will

assume that precondioners are positive-definite (e.g., add an infinitesimal value to the diagonal).



1.3.1 Algorithm and guarantee

Since ∇ψt(x) = Atx and ∇ψ∗
t (x) = A−1

t x, we update w̃t+1 = ∇ψ∗
t (∇ψt(wt)− ηtgt) = wt − ηtA−1

t gt. In summary,
we start from some initial hypothesis w1 ∈ V ⊆ Rd (with dummy η0 =∞ and A0 = 0d×d) and for t = 1, 2, . . .

• The enemy picks a convex and differentiable loss lt : Rd → R and we suffer lt(wt) ∈ R.

• We compute the gradient gt = ∇lt(wt).

• We pick a learning rate ηt ≤ ηt−1 and a preconditioner At ⪰ At−1.

• We compute w̃t+1 = wt − ηtA−1
t gt ∈ Rd.

• We project wt+1 = argminw∈V Dψt(w, w̃t+1) ∈ V .

Let DA = maxTt=1 ||wt − u||A and DA,1 = ||w1 − u||A; for the special case A = Id, let D = maxTt=1 ||wt − u||2 and
D1 = ||w1 − u||2. After T such steps, we guarantee by (8) that w1 . . . wT ∈ V satisfy

T∑
t=1

lt(wt)− lt(u) ≤
D2tr (AT )

2ηT
+

1

2

T∑
t=1

ηt ||gt||2A−1
t

(always) (18)

T∑
t=1

lt(wt)− lt(u) ≤
D2
A

2ηT
+

1

2

T∑
t=1

ηt ||gt||2A−1 (if At = A) (19)

T∑
t=1

lt(wt)− lt(u) ≤
D2
A,1

2η
+
η

2

T∑
t=1

||gt||2A−1 (if At = A and ηt = η) (20)

In principle, DA can grow as O(T ). This issue is usually addressed by assuming V ⊆ Rd to have a finite diameter
∆ = maxx,y∈V ||x− y||A so that DA ≤ ∆ is constant in T . But this is not a solution, and in practice V = Rd
almost always (i.e., no projection). Thus we will assume V = Rd and treat DA as constant in T .

2 Stochastic Gradient Descent (SGD)

SGD uses no preconditioning (i.e., A = Id) and specifies the update

wt+1 = wt − ηtgt (21)

corresponding to constant regularization Dψ(x, y) = 1
2 ||y − x||

2
2 in Euclidean space with ψ(x) = 1

2 ||x||
2
2. As a

special case of mirror descent, it satisfies the regret bound (19) (or (20) if ηt = η > 0 is constant). But the
derivation becomes particularly simple, so we give one below. For any t:

||wt − u||22 − ||wt+1 − u||22 = ||wt − u||22 − ||wt − u− ηtgt||
2
2 = 2ηt g

⊤
t (wt − u)︸ ︷︷ ︸

≥lt(wt)−lt(u)

−η2t ||gt||
2
2

yielding the per-step bound lt(wt)− lt(u) ≤ 1
2ηt

(
||wt − u||22 − ||wt+1 − u||22

)
+ ηt

2 ||gt||
2
2 that telescopes and gives us

(19) (assuming ηt ≤ ηt−1) and (20). We have skipped the use of the Pythagorean theorem (which holds exactly in
this case, check the conditions in Lemma D.3) and other inequalities in (4–6).

2.1 Analysis

Assume a bound on the gradient norm L ≥ maxTt=1 ||gt||2 (treated as constant in T ). If ηt = η, we have from (20)

T∑
t=1

lt(wt)− lt(u) ≤
D2

1

2η
+
η

2

T∑
t=1

||gt||22 ≤
D2

1

2η
+
η

2
L2T (22)

It is clear that choosing η = 1√
T

makes the bound O(
√
T ), but we can explicitly minimize it over η. The minimizer

is η⋆ = D1

L
√
T

(not practical since D1 and L are unknown), yielding

T∑
t=1

lt(wt)− lt(u) ≤ D1L
√
T (23)



If T is unknown, we can use the per-step learning rate ηt =
1√
t
. Since it satisfies ηt ≤ ηt−1, we have from (19)

T∑
t=1

lt(wt)− lt(u) ≤
D2

2ηT
+

1

2

T∑
t=1

ηt ||gt||22 ≤
D2

2

√
T +

L2

2

(
T∑
t=1

1√
t

)
︸ ︷︷ ︸

≤2
√
T

≤
(
D2 + 2L2

2

)√
T (24)

where the inequality
∑T
t=1

1√
t
≤ 2
√
T is a special case of the following fact.

Fact 2.1. Let x1 . . . xT ∈ Rd be any vectors and let Xt =
∑t
l=1 xlx

⊤
l ⪰ 0. Then

T∑
t=1

x⊤t X
−1/2
t xt ≤ 2tr

(
X

1/2
T

)

If d = 1, it can be stated as
∑T
t=1

bt√
Bt
≤ 2
√
BT for any nonnegative b1 . . . bT ≥ 0 where Bt =

∑t
l=1 bl ≥ 0.

Proof of Fact 2.1. tr
(
X1/2

)
∈ R is concave in X ⪰ 0 with gradient 1

2X
−⊤/2. Thus tr

(
A1/2

)
≤ tr

(
B1/2

)
+

tr
(
1
2B

−1/2(A−B)
)
for any B ⪰ A, or tr

(
B1/2

)
− tr

(
A1/2

)
≥ 1

2 tr
(
B−1/2(B −A)

)
. Since Xt = Xt−1 + xtx

⊤
t , we

have tr
(
X

1/2
t

)
− tr

(
X

1/2
t−1

)
≥ 1

2 tr
(
X

−1/2
t xtx

⊤
t

)
= 1

2x
⊤
t X

−1/2
t xt. Summing both sides over t gives the statement.

3 AdaGrad

SGD is potentially inefficient because it does not use the gradient information. Avoid the lossy second inequality in

(22) and directly minimize the first bound
D2

1

2η + η
2

∑T
t=1 ||gt||

2
2 over η. This yields a potentially much larger learning

rate η⋆ = D1√∑T
t=1||gt||

2
2

≫ D1

L
√
T

and a tighter bound

T∑
t=1

lt(wt)− lt(u) ≤ D1

√√√√ T∑
t=1

||gt||22 (25)

assuming
∑T
t=1 ||gt||

2
2 ≪ (maxTt=1 ||gt||

2
2)T (i.e., big gradients are outliers). The learning rate requires the knowledge

of all gradients g1 . . . gT , so it can only be set in hindsight. But we can use the partial sum:

ηt =
D√∑t
l=1 ||gl||

2
2

(26)

Since it satisfies ηt ≤ ηt−1, in a complete analogy to (24):

T∑
t=1

lt(wt)− lt(u) ≤
D2

2ηT
+

1

2

T∑
t=1

ηt ||gt||22 ≤
D

2

√√√√ T∑
t=1

||gt||22 +
D

2

 T∑
t=1

||gt||22√∑t
l=1 ||gl||

2
2


︸ ︷︷ ︸

≤2
√∑T

t=1||gt||
2
2

≤ 3

2

D
√√√√ T∑

t=1

||gt||22

 (27)

which is only ≈ 1.5 times worse than the oracle bound (25) (assuming D ≈ D1). We can scale (26) by
√
2
2 to slightly

improve the constant to ≈ 1.4.

We can similarly find the optimal preconditioner in hindsight and work backward. We assume the update wt+1 =
wt + A−1gt (i.e., η = 1) where A ≻ 0 has absorbed any fixed learning rate. Denoting δ1 = w1 − u ∈ Rd and

OT =
∑T
t=1 gtg

⊤
t ≻ 0, we may consider minimizing (20) which is equivalent to

A⋆ = argmin
A∈Rd×d: A⪰0

δ⊤1 Aδ1 + tr
(
A−1OT

)︸ ︷︷ ︸
J(A)

(28)



This is a proper convex problem. J is bounded below by 0 (both terms are nonnegative). J is convex (the second
term is well known to be convex over A ≻ 0). The feasible set of PSD matrices is closed and convex. Thus an
infimum exists. However, no A⋆ ⪰ 0 attains that infimum. A⋆ cannot be a boundary point (i.e., has some zero
eigenvalues) since then J(A⋆) is undefined. For A⋆ ≻ 0, we must have ⟨∇J(A⋆), A−A⋆⟩F ≥ 0 for all A ⪰ 0
(Lemma C.3) which means ∇J(A⋆) = 0d×d. But this condition is

δ1δ
⊤
1 = (A⋆)−1OT (A

⋆)−1

which is impossible due to a rank mismatch. This implies that while a limit on a series of increasingly degenerate
A ≻ 0 achieves the infimum, the minimizer (28) does not exist.

3.1 Diagonal Preconditioner

AdaGrad (Duchi et al., 2011) dramatically simplifies (28) by constraining the preconditioner to be diagonal, i.e.,
A = diag (a1 . . . ad) where ai > 0. With this restriction, (28) decomposes over dimensions:

a⋆1 . . . a
⋆
d = argmin

a1...ad≥0

d∑
i=1

(
δ21,iai +

1

ai

T∑
t=1

g2t,i

)
(29)

The objective is convex in each ai > 0. The stationary condition implies the closed form solution

a⋆i =
1

|δ1,i|

√√√√ T∑
t=1

g2t,i (30)

Plugging A⋆ = diag (a⋆1 . . . a
⋆
d) in (20), we have the minimized bound

T∑
t=1

lt(wt)− lt(u) ≤
d∑
i=1

|δ1,i|

√√√√ T∑
t=1

g2t,i (31)

It is instructive to compare this to (25). Letting αi = |δ1,i| and βi =
√∑T

t=1 g
2
t,i, by Hölder’s inequality

d∑
i=1

|δ1,i|

√√√√ T∑
t=1

g2t,i = α⊤β ≤ ||α||2 ||β||2 = D1

√√√√ T∑
t=1

||gt||22

The equality holds iff α = λβ for some λ > 0 (i.e., A⋆ = λId). Otherwise, (31) may be much tighter than (25).

3.1.1 Per-step preconditioner

At step t ≤ T , we again use the partial sum. For instance, if we set At,i,i =
1
D

√∑t
l=1 g

2
l,i, we have At ⪰ At−1 and

can straightforwardly use (18) and Fact 2.1 to bound the regret as

T∑
t=1

lt(wt)− lt(u) ≤
3D

2

d∑
i=1

√√√√ T∑
t=1

g2t,i

We can also argue for a tighter bound using At,i,i =
1
δi

√∑t
l=1 g

2
l,i where δi = maxTt=1 |wt,i − ui|. The idea is to

treat A−1
t,i,i = (26) as a “learning rate” for each dimension i for which we have the bound (27). We can decompose

the bound using the basic fact that “a convex regret is upper bounded by the linearized regret”. Formally,

T∑
t=1

lt(wt)− lt(u) ≤
T∑
t=1

g⊤t wt − g⊤t u =

d∑
i=1

(
T∑
t=1

gt,iwt,i − gt,iui

)
≤ 3

2

d∑
i=1

δi

√√√√ T∑
t=1

g2t,i (32)

where the second inequality treats
∑T
t=1 gt,iwt,i−gt,iui as the regret for the 1-dimensional (linear) losses lt,i(wt,i) =

gt,iwt,i for each i. This is only ≈ 1.5 times worse than (31) (assuming |δ1,i| ≈ δi).



3.2 Full Preconditioner

We can “force” a non-diagonal minimizer in (28) by regularizing the trace:

A⋆ = argmin
A≻0

δ⊤1 Aδ1 + tr
(
A−1OT

)
≈ argmin
A≻0: tr(A)≤c

tr
(
A−1OT

)
=

c

tr(O
1/2
T )

O
1/2
T (33)

(see Lemma C.3 in this note for the closed-form solution). Plug in A⋆ = O
1/2
T in (18) with ηt = D to have

T∑
t=1

lt(wt)− lt(u) ≤ D tr
(
O

1/2
T

)
(34)

Compare this with plugging in the diagonal counterpart A⋆i,i =
√∑T

t=1 g
2
t,i in (18) which yields

T∑
t=1

lt(wt)− lt(u) ≤ D
d∑
i=1

√√√√ T∑
t=1

g2t,i (35)

Though they look similar, (34) is smaller than (35) unless OT is diagonal (Lemma C.4). Intuitively, O
1/2
T exploits

the interplay between dimensions while
∑d
i=1

√∑T
t=1 g

2
t,i does not. In particular, (34) is O(

√
T ) (since (35) is).

3.2.1 Per-step preconditioner

At step t ≤ T , let Ot =
∑t
l=1 glg

⊤
l and use At = O

1/2
t . Assuming the constant learning rate ηt = D, (18) becomes

T∑
t=1

lt(wt)− lt(u) ≤
Dtr

(
O

1/2
T

)
2

+
D

2

T∑
t=1

g⊤t O
−1/2
t gt ≤

Dtr
(
O

1/2
T

)
2

+Dtr
(
O

1/2
T

)
=

3D

2
tr
(
O

1/2
T

)
(36)

where the second inequality uses Fact 2.1. Again, we conclude that the regret bound is only 1.5 worse when using
a per-step preconditioner (i.e., compared to (34)).

3.3 AdaGrad in Practice

The full AdaGrad preconditioner At = (
∑t
l=1 glg

⊤
l )

1/2 ∈ Rd×d is unfortunately impractical for any large d, so we

use the diagonal preconditioner where At,i,i =
√∑t

l=1 g
2
l,i. Then the update wt+1 = wt + ηtA

−1
t gt is equivalent to

per-parameter adaptive learning rates:

wt+1,i = wt,i −
ηt√∑t
l=1 g

2
l,i

gt,i (37)

where the learning rate shrinks based on how heavily the parameter has been updated in the past. Note that
w2,i = w1,i − η1 and the magnitude of the update is always at most ηt.

4 Adam

AdaGrad has inspired a whole class of per-parameter adaptive updates. One practical issue of AdaGrad is that
the update can only become smaller throughout training because the denominator in (37) can only become larger.
This is fine for convex problems where there is only one local optimum, but we may want to allow the update to
jump back in size for nonconvex problems. One way to address this issue is by “forgetting” the far past. We may
only use the past K < t steps at step t to compute the denominator. Better, we may use an exponential moving
average (EMA):

vt = β2vt−1 + (1− β2)g2t

where v0 = 0d and β2 ∈ [0, 1) is a coefficient (i.e., how much to remember). If we view gt as iid random variables
with mean g ∈ Rd, we have E[vt] = (1 − βt2)g2 (easy to prove by induction) which converges to the true second

http://karlstratos.com/notes/lagrangian.pdf


moment g2 as t → ∞. While at it, we can use momentum for the gradient itself which is well known to help in
making SGD more stable:

mt = β1mt−1 + (1− β1)gt

for m0 = 0d and β1 ∈ [0, 1). Again, E[mt] = (1− βt1)g → g as t→∞. Replacing gt and
∑t
l=1 g

2
l,i in (37) with mt

and vt, we have RMSProp with momentum (Tieleman et al., 2012; Graves, 2013):

wt+1 = wt − ηt
mt√
vt

(38)

Adam (Kingma and Ba, 2014) observes that since β1, β2 are typically close to 1, the initial updates will be small
until they gain some momentum. But since

g =
1

1− βt1
E [mt] g2 =

1

1− βt2
E [vt]

we can use m̄t =
1

1−βt
1
mt and v̄t =

1
1−βt

1
vt to correct the bias where E[m̄t] = g and E[v̄t] = g2. This yields the

Adam update

wt+1 = wt − ηt
m̄t√
v̄t

(39)

Using the second moment E[g2t ] instead of the sum
∑
t g

2
t is a fundamental departure from AdaGrad. In this case,

the preconditioner can be seen as a flawed approximation of the Hessian/Fisher matrix, relating Adam to Netwon’s
method and natural gradient descent (Appendix I).

4.1 Scale Invariance

A property of any AdaGrad-style update like Adam and RMSProp is scale invariance: the gradient can be scaled by
an arbitrary constant without changing the update. More specifically, we can multiply all gradients gt elementwise
by some c ∈ Rd in Adam and have

wt+1 = wt − ηt
diag (c) m̄t√
diag (c)

2
v̄t

= wt − ηt
m̄t√
v̄t

Scale invariance is suspected to be important for training deep networks. The gradient of a linear function c⊤w
with respect to w is c, which may blow up or shrivel in top layers. With vanilla SGD, weights at the top layer may
receive either huge or tiny updates compared to ones at the bottom layer. With scale invariant methods like Adam,
weights at either layer will learn at a similar pace. Note that Adam is implemented with smoothing in practice:
wt+1,i = wt,i− ηt√

c2i v̄t,i+ϵ
cim̄t,i. It is not scale invariant for ϵ > 0. But since ϵ is typically minuscule, scale invariance

is approximately preserved (Zhuang et al., 2022).

4.2 Convergence

In the proof of AdaGrad’s convergence, we use the fact that the learning rate is nonincreasing. This is no longer
true in momentum-based updates like RMSProp and Adam. In fact, there is a problem for which Adam does not
converge (i.e., it has a linear regret) (Reddi et al., 2019). One way to enforce a nonincreasing learning rate in
Adam is to take the elementwise max v̄max

t = max
{
v̄max
t−1 , v̄t

}
where v̄max

0 = 0d and use v̄max
t in place of v̄t in the

update (39) (AMSGrad). Adam with AMSGrad now has convergence guarantees and is indeed able to converge
in synthetic examples that vanilla Adam spectacularly fails to converge in (Figure 1 in their paper). In practice,
however, AMSGrad does not seem to make a whole lot of difference in downstream performance (see this blog).

4.3 Weight Decay

Hanson and Pratt (1988) originally proposed weight decay w ← (1 − λ)w as a way of regularizing the model size
independently of the loss. In SGD, it coincides with l2 regularization. Even here, there is an important caveat: the
decay factor must be coupled with the learning rate.

wt+1 = wt − ηt∇
(
lt(wt)−

λ′

2
||wt||22

)
︸ ︷︷ ︸

SGD with l2 regularization

= wt − ηt∇lt(wt)− ηtλ′wt︸ ︷︷ ︸
SGD with decay factor λ = ηtλ

′

https://fdlm.github.io/post/amsgrad/


With pre-conditioning they do not coincide.

wt+1 = wt − ηtA−1∇
(
lt(wt)−

λ′

2
||wt||22

)
= wt − ηtA−1∇lt(wt)− λ′ηtA−1wt

where the last term is not equal to λwt for any λ > 0 unless A = cId is spherical. Loshchilov and Hutter (2017)
thus propose to perform explicit weight decay on top of Adam, denoted as AdamW. The original AdamW paper
describes coupled weight decay, which is presumably the reason that standard libraries multiply the decay factor
with the learning rate (e.g., PyTorch). However, Wortsman et al. (2024) find that fully decoupling the learning rate
and the decay factor makes training less sensitive to the choice of learning rate. Specifically, they use

wt+1 = wt − st
(
ηmax

m̄t√
v̄t
− λmaxwt

)
where ηmax and λmax are the maximum learning rate and decay factor, and st ∈ [0, 1] is a schedule multiplier. The
schedule typically “warms up” for Twarmup steps to 1, then “cools down” to some small final value. Thus the update
has the form wt+1 = wt− ηt m̄t√

v̄t
−λtwt with the stepwise ηt = stηmax and λt = stλmax. In contrast, coupled weight

decay has the form wt+1 = wt − ηt( m̄t√
v̄t
− λwt).

4.4 Full Algorithm

AdamW
Input:

• Initial parameter value w1 ∈ Rd
• Loss functions l1, l2, . . . , lT : Rd → R (lt corresponds to the loss on the t-th minibatch)
• Schedule s1, s2, . . . , sT ∈ [0, 1]
• Maximum learning rate ηmax > 0 and weight decay factor λmax ≥ 0
• Momentum coefficients (β1, β2), smoothing coefficient ϵ ≥ 0, flag for using AMSGrad

1. Initialize the first and second momentum estimates (m0, v0, v̄
max
0 )← (0d, 0d, 0d).

2. For t = 1 . . . T :

(a) Do backprop and compute the gradient gt ← ∇lt(wt).
(b) Compute the bias-corrected EMA estimates for the gradient and squared gradient:

mt ← β1mt−1 + (1− β1)gt vt ← β2vt−1 + (1− β2)g
2
t

m̄t ←
1

1− βt1
mt v̄t ←

1

1− βt2
vt

(c) v̂t ← v̄max
t where v̄max

t ← max {v̄max
t−1 , v̄t} if AMSGrad, else v̂t ← v̄t

(d) Compute the per-parameter update for i = 1 . . . d:

wt+1,i ← wt,i − st

(
ηmax√
v̂t,i + ϵ

m̄t,i − λmaxwt,i

)

3. Return wT+1 ∈ Rd

The hyperparameters affect each other and need to be tuned jointly for the given model and dataset (e.g., a longer
warmup allows for a larger value of effective ηmax). There are many techniques specifically designed for large-scale
training. One example is “annealing”, in which the final phase of training is performed on very high quality data
with a schedule that linearly decays to 0. An average of the weights during annealing is used as the final model
(Dubey et al., 2024).

5 Approximations of Adam

A practical issue with Adam is that it requires maintaining the first/second gradient moments m, v ∈ Rd. For
instance, if w ∈ Rd are in bfloat16, maintainingm, v in float32 increases the memory requirement for optimization
from 4d to 12d bytes (excluding other overheads in backpropagation). Many works attempt to cut down the memory
usage for v.

https://github.com/pytorch/pytorch/blob/095c5ccf9fa935fa37ac4760abfdf69d9a2f2a95/torch/optim/adamw.py#L384


5.1 Adafactor

Adafactor (Shazeer and Stern, 2018) assumes that weights are organized as matrices W ∈ Rm×n (e.g., layers) and
uses a low-rank approximatation of the corresponding second moment V ∈ Rm×n. If there are≪ d weight matrices,
this effectively makes the memory overhead O(1). The usual Adam update has the form (for matrix weights)

Wt+1 =Wt − η
Mt√
Vt

where Mt ≈ E[Gt] and Vt ≈ E[G2
t ] = G2 for the stochastic gradient Gt ∈ Rm×n. Adafactor instead proposes to

perform

Wt+1 =Wt − η
Mt√
AtBt

where At ∈ Rm×r and Bt ∈ Rr×n are low-rank matrices such that E[AtBt] ≈ G2. Practical considerations impose
certain constraints: (1) At, Bt need to be updatable in an online fashion, (2) they are (ideally) strictly positive
since we will divide by their square roots. This makes SVD difficult to use (though it yields an optimal solution
in Frobenius norm) since it does not decompose over matrix additions and can be negative. The problem is more
naturally approached as nonnegative matrix factorization (NMF) (Appendix K). It is well known that the following
rank-1 NMF objective

a⋆, b⋆ ∈ argmin
a∈Rm

≥0
,b∈Rn

≥0

IDiv(G2, ab⊤)

has the solution space of a⋆(b⋆)⊤ =
G21n1

⊤
mG

2

1⊤mG
21n

(e.g., a⋆ = G21n and b⋆ = (G2)⊤1m
1⊤ma

⋆ ). To derive an online update,

Adafactor maintains the EMA (with a0 = 0m and s0 = 0n):

at = βat−1 + (1− β)G2
t1n āt =

1

1− βt
at V̂t =

āts̄
⊤
t

1⊤māt
=

(
1

1− βt

)
ats

⊤
t

1⊤mat

st = βst−1 + (1− β)(G2
t )

⊤1m s̄t =
1

1− βt
st

and uses V̂t to approximate the second moment.3 While the rank-1 contraint can be limiting, it is easy to derive a
rank-r generalization of Adafactor using EM (Appendix K.2).

5.2 TODO: Adam-mini

6 Shampoo

AdaGrad shows that the best we can do is wt+1 = wt − ηO−1/2
t gt where Ot =

∑t
l=1 glg

⊤
l ∈ Rd×d. But this incurs

O(d3) compute overhead (i.e., to invert a d×d matrix). Instead of resorting to a diagonal appoximation, Shampoo
(Gupta et al., 2018) proposes a clever middle ground by assuming the hypothesis space Rm×n of matrices. At step
t, we propose Wt ∈ Rm×n and receive a loss lt(Wt) ∈ R where lt : Rm×n → R is convex and differentiable. Let
Gt = ∇lt(Wt) ∈ Rm×n denote the per-step gradient. Shampoo prescribes

Wt+1 =Wt − η L−1/4
t︸ ︷︷ ︸
m×m

Gt︸︷︷︸
m×n

R
−1/4
t︸ ︷︷ ︸
n×n

Lt =

t∑
l=1

GlG
⊤
l Rt =

t∑
l=1

G⊤
l Gl (40)

The compute overhead is now O(m3 + n3) which is much smaller than the full conditioning overhead O(m3n3).
For analysis, we can convert (40) to an equivalent standard form by the usual properties of Kronecker product
(Appendix G),

wt+1 = wt − η
(
L
1/4
t ⊗R1/4

t

)−1

︸ ︷︷ ︸
mn×mn

gt︸︷︷︸
mn×1

(41)

3Note that this is a biased estimator of the optimal rank-1 decomposition since at and st are correlated. That is, E[V̂t] = E[
āts̄

⊤
t

1⊤māt
] ̸=

E[āt]E[s̄t]
⊤

1⊤mE[āt]
=

G21n1⊤mG
2

1⊤mG
21n

= a⋆(b⋆)⊤.



where gt = vec(Gt) and wt = vec(Wt). Thus Shampoo is “just” Euclidean mirror descent with the per-step

preconditioner At = L
1/4
t ⊗R1/4

t . Since Lt ⪰ Lt−1 and Rt ⪰ Rt−1, we also have At ⪰ At−1 (see (75)). The obvious

intuition is that At ≈ O1/2
t . In particular, we can show that

O
1/2
t ⪯

√
r(L

1/4
t ⊗R1/4

t ) =
√
rAt (42)

where r = maxt rank (Gt).
4 Since the vectorized losses lt : Rmn → R (trivially) remain convex and differentiable

and At ⪰ At−1, we can use (18) to bound the regret:

T∑
t=1

lt(wt)− lt(u) ≤
D2tr (AT )

2η
+
η

2

T∑
t=1

g⊤t A
−1
t gt

≤ D2tr (AT )

2η
+
η
√
r

2

T∑
t=1

g⊤t O
−1/2
t gt (since A−1

t ⪯
√
rG−1/2 by (42))

≤ D2tr (AT )

2η
+ η
√
rtr
(
O

1/2
T

)
(Fact 2.1)

≤ D2tr (AT )

2η
+ ηrtr (AT ) (using (42) again)

= D
√
2r tr

(
L
1/4
T

)
tr
(
R

1/4
T

) (
using η =

D√
2r

)
We can show that tr(L

1/4
T ) = O(T 1/4) and tr(R

1/4
T ) = O(T 1/4), thus the bound is O(

√
T ).

6.1 Shampoo with EMA

Shampoo is derived as an approximation to the AdaGrad preconditioner (42) and therefore uses the sum of the
gradient outer products (i.e., Lt =

∑
l≤tGlG

⊤
l and Rt = Rt =

∑
l≤tG

⊤
l Gl). As with RMSProp/Adam, in practice

we benefit from replacing it with a running estimate of the expected value L = E[GtG
⊤
t ] and R = E[G⊤

t Gt], e.g.,
bias-corrected EMA, so that the update is not made monotonically smaller (Shi et al., 2023). We can then view
Shampoo as

Wt+1 =Wt − ηL−1/4GtR
−1/4 ⇔ wt+1 = wt − η

(
L1/4 ⊗R1/4︸ ︷︷ ︸
Ashampoo

)−1
gt

By adapting (42), we can easily show

I1/2emp ⪯
√
rL1/4 ⊗R1/4 =

√
rAshampoo (43)

So as in RMSProp/Adam, Shampoo with EMA can be motivated as approximating Ashampoo ≈ I1/2emp ≈ Ifisher ≈ H.

Instead of using the bound (43) for approximation, Morwani et al. (2024) directly approximate I
1/2
emp with one round

of power iteration and derive the squared preconditioner A2
shampoo = L1/2 ⊗R1/2 (Appendix I.1).

Pointers

• Introduction to Online Learning by Francesco Orabona, in particular online gradient descent and adaptive
algorithms

• Lecture slides by Sham Kakade

• Lecture slides by Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky

• Blog by Sebastian Ruder

• Notes on mirror descent by Xinhua Zhang

• Course notes by Roger Grosse

4From Lemma G.3, we have Ot =
∑t
l=1 glg

⊤
l ⪯ r

∑t
l=1(GlG

⊤
l )⊗ In = rLt ⊗ In and similarly Ot ⪯ rIm ⊗ Rt. Using Fact G.4, we

get Ot ⪯ r(Lt ⊗ In)1/2(Im ⊗Rt)1/2 = rL
1/2
t ⊗R

1/2
t and also O

1/2
t ⪯

√
r(L

1/4
t ⊗R

1/4
t ).

https://parameterfree.com/lecture-notes-on-online-learning/
https://parameterfree.com/2019/09/11/online-gradient-descent/
https://parameterfree.com/2019/09/20/adaptive-algorithms-l-bounds-and-adagrad/
https://parameterfree.com/2019/09/20/adaptive-algorithms-l-bounds-and-adagrad/
https://courses.cs.washington.edu/courses/cse547/17sp/slides/adagrad.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.ruder.io/optimizing-gradient-descent/
https://users.cecs.anu.edu.au/~xzhang/teaching/bregman.pdf
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2021/readings/L05_normalization.pdf
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A Stochastic Optimization

Let x ∼ pop define a convex per-example loss Jx(w) ∈ R over w ∈ V . Let

w⋆ = argmin
w∈V

E
x∼pop

[Jx(w)] (44)

Denote the expected loss J(w) = Ex∼pop[Jx(w)] (which remains convex) and let J⋆ = J(w⋆). Suppose we use an
online algorithm for this loss. Starting from some initial w1 ∈ V , for t = 1 . . . T , we sample an iid xt ∼ pop, get
punished by the convex loss Jxt

(wt) ∈ R, and obtain wt+1 from the algorithm. Let Regret(T ) be a regret bound of
the algorithm so that

T∑
t=1

Jxt(wt)− min
w∈V

T∑
t=1

Jxt(w) ≤ Regret(T ) (45)

In particular,

T∑
t=1

Jxt
(wt)−

T∑
t=1

Jxt
(w⋆) ≤ Regret(T )

Dividing both sides by T yields

1

T

T∑
t=1

Jxt(wt)−
1

T

T∑
t=1

Jxt(w
⋆) ≤ Regret(T )

T

Taking the expectation wrt. the iid samples x1 . . . xT ∼ pop (on both sides), we have

1

T

T∑
t=1

E
x1...xT∼pop

[Jxt
(wt)]− J⋆ =

1

T

T∑
t=1

E
x∼pop,wt

[Jx(wt)]− J⋆ =
1

T

T∑
t=1

E
wt

[J(wt)]− J⋆ ≤
Regret(T )

T

where wt is now also a random variable. It is independent of xt since it is determined by x1 . . . xt−1 (hence the
equalities). By the convexity of J ,

1

T

T∑
t=1

E
wt

[J(wt)] = E
w1...wT

[
1

T

T∑
t=1

J(wt)

]
≥ E
w̄T

[Jx(w̄T )]

where w̄T = 1
T

∑T
t=1 wt. Putting together, we have

E
w̄T

[Jx(w̄T )]− J⋆ ≤
Regret(T )

T

I.e., taking the average of w1 . . . wT from the online algorithm on (any sequence of) iid samples x1 . . . xT ∼ pop

yields a solution w̄T that on average (wrt. sampling randomness) falls behind J⋆ at the rate of O(Regret(T )
T ). In

particular, if Regret(T ) = o(T ) (i.e., sublinear regret), the solution is guaranteed to converge to J⋆ asymptotically.
For instance, if Regret(T ) = O(

√
T ), the solution has the convergence rate of O( 1√

T
).

B Lower Bound on Regret

Let V = {±1} denote the hypothesis space. At each step t, the enemy randomly picks xt = ±1 and defines the
(linear) loss lt(wt) = −xtwt. Then no matter what w1 . . . wT we choose, our expected cumulative loss is always zero
by the linearity of expectation and the independence of wt and xt

E
x1...xT

[
−

T∑
t=1

xtwt

]
= −

T∑
t=1

E
xt

[xt]︸ ︷︷ ︸
0

wt = 0

For any choices of x1 . . . xT ∈ {±1}, the hypothesis u ∈ {±1} that achieves the smallest cumulative loss must

minimize −
∑T
t=1 xtu, which is either −

∑T
t=1 xt or

∑T
t=1 xt. This implies that u = sign

(∑T
t=1 xt

)
. Thus for any

w1 . . . wT , the expected regret is

E
x1...xT

[
−

T∑
t=1

xtwt +

T∑
t=1

xtsign

(
T∑
t′=1

xt′

)]
= E
x1...xT

[∣∣∣∣∣
T∑
t=1

xt

∣∣∣∣∣
]
= Θ(

√
T )



The last term is Θ(
√
T ) just by the central limit theorem.5 Thus we have constructed a randomized enemy that

achieves an Ω(
√
T ) expected regret for any w1 . . . wT asymptotically as T → ∞. This implies the existence of

some deterministic enemy that achieves an Ω(
√
T ) regret for any w1 . . . wT asymptotically as T → ∞ (aka. Yao’s

minimax principle). The intuition is that randomization is only a handicap for the enemy, not a feature.

C Lemmas

Lemma C.1 (First-order necessary condition in constrained optimization). Let f : X → R where X ⊆ Rd.
Let V ⊆ X be a closed convex set. Let x⋆ ∈ V be a local minimizer of f over V (i.e., −∞ < f(x⋆) ≤ f(x) for all
x ∈ V within an ϵ-ball around x⋆ for some small ϵ > 0) and f is differentiable at x⋆. Then

⟨∇f(x⋆), x− x⋆⟩ ≥ 0 ∀x ∈ V (46)

The converse is not true; there may be cases where x⋆ ∈ V satisfies ⟨∇f(x⋆), x− x⋆⟩ ≥ 0 for all x ∈ V but x⋆ is
not a local minimizer of f over V .

Proof (lecture style). First, since we assume that f is differentiable at x⋆, we can be assured that f is continuous
and nicely behaving at least at that point (but f(x) could be still nondifferentiable, discontinuous, or undefined
at any x ̸= x⋆). Second, (46) is useful only because x⋆ is a local minimizer constrained to be in V ; otherwise
∇f(x⋆) = 0d and (46) is trivially satisfied. Thus (46) can be seen as simply stating that for a minimizer at the
boundary x⋆, any “feasible direction” x − x⋆ from x⋆ to x ∈ V must agree with the gradient ∇f(x⋆)
(i.e., both positive, or both negative).

It is best to understand this behavior by visualizing a few choices of f and x⋆ on a 1D closed interval V = [a, b] ⊂ R
(or a 2D closed convex set V ⊂ R2 for more intuition). If x⋆ is a local minimizer strictly inside V , the gradient is
zero and we are done. So we may only concern ourselves with the case where x⋆ ∈ V is on the boundary (using the
closedness of V ) with a nonzero slope. In the 1D example, either x⋆ = a and f ′(a) > 0, or x⋆ = b and f ′(b) < 0. In
each case, the feasible direction x− x⋆ becomes positive or negative to make (46) true.

More formally, pick any x ∈ V . Since V is a convex set, we must have (1 − t)x⋆ + tx ∈ V for all t ∈ [0, 1]. Let
ϕ : [0, 1]→ R measure the value of f as we walk from x⋆ to x, i.e., ϕ(t) = f(x⋆+ t(x−x⋆)). Note that ϕ(0) = f(x⋆).
Since f is differentiable at x⋆, ϕ(t) must be differentiable at t = 0 from the right, i.e., the following limit exists:

ϕ′+(0) = lim
h→0+

ϕ(h)− ϕ(0)
h

(47)

Since x⋆ ∈ V is a local minimizer, no matter where x ∈ V is, we must have ϕ(0) = f(x⋆) ≤ f(x⋆+ t(x−x⋆)) = ϕ(t)
for a small enough t ≥ 0. But this implies that (47) is nonnegative.

It remains to calculate (47). This is easy if f is differentiable since then ϕ′(t) = ⟨∇f(x⋆ + t(x− x⋆)), x− x⋆⟩ and
thus ϕ′(0) = ϕ′+(0) = ⟨∇f(x⋆), x− x⋆⟩. In the general case, again using the differentiability of f at x⋆ we have
ϕ(h) = f(x⋆ + h(x− x⋆)) = f(x⋆) + h ⟨∇f(x⋆), x− x⋆⟩+ o(h) for a small enough h > 0, so

ϕ′+(0) = lim
h→0+

ϕ(h)− ϕ(0)
h

= lim
h→0+

h ⟨∇f(x⋆), x− x⋆⟩+ o(h)

h
= ⟨∇f(x⋆), x− x⋆⟩

Finally, it is clear that (46) is not a sufficient condition for x⋆ ∈ V to be a local minimizer since a local maxi-
mizer or a saddle point satisfies ∇f(x⋆) = 0d. It is not clear if there are examples with nonzero gradients (i.e.,
⟨∇f(x⋆), x− x⋆⟩ > 0 for all x ∈ V but x⋆ is not a local minimizer).

Lemma C.2 (First-order characterization of constrained convex optimization). Let f : X → R where
X ⊆ Rd. Let V ⊆ X be a closed convex set. If f is convex on V ,

x⋆ = argmin
x∈V

f(x)
∧

f is differentiable at x⋆ ⇔ ⟨∇f(x⋆), x− x⋆⟩ ≥ 0 ∀x ∈ V (48)

5Each xt is an independent Rademacher variable with mean 0 and variance 1, so we have |
∑T
t=1 xt| →

√
T |Z| where Z ∼ N (0, 1).

The boundedness of |·| implies E[|
∑T
t=1 xt|] →

√
TE[|Z|] where E[|Z|] =

√
2/π is some constant.



Proof. The statement is true simply because the convexity of f on V eliminates the local maximizer and saddle
point issues, making (46) a sufficient condition for x⋆ ∈ V to be a local (hence global) minimizer. More formally,
the direction ⇒ is given by Lemma C.1. For the direction ⇐, since f is convex on V , for any x ∈ V we must have

f(x) ≥ f(x⋆) + ⟨∇f(x⋆), x− x⋆⟩ ≥ f(x⋆)

but this means x⋆ is a global minimum.

Lemma C.3 (First-order characterization of constrained convex optimization (matrix)). Let J : Rd×d →
R be a convex and differentiable function. Let V ⊆ Rd×d be a closed convex set. Then

A⋆ = argmin
A∈V

J(A)
∧

J is differentiable at A⋆ ⇔ ⟨∇J(A⋆), A−A⋆⟩F ≥ 0 ∀A ∈ V (49)

where ⟨A,B⟩F = tr
(
A⊤B

)
=
∑
i,j Ai,jBi,j is the Frobenius inner product.

Lemma C.4. Let OT = GG⊤ ∈ Rd×d where G = (g1 . . . gT ) ∈ RT×d is the matrix of gradients with rank d. Then

tr
(
O

1/2
T

)
≤

d∑
i=1

√√√√ T∑
t=1

g2t,i (50)

with equality iff OT is diagonal; more specifically, OT = diag
(
σ2
1 . . . σ

2
d

)
where σ1 > . . . > σd > 0 are the (distinct,

for convenience) singular values of G.

Proof. Let G = UΣV ⊤ denote an SVD of G. Then OT = V Σ2V ⊤ and thus O
1/2
T = V ΣV ⊤, so the LHS can be

expressed as tr
(
O

1/2
T

)
=
∑d
i=1 σi (i.e., the nuclear norm ||G||∗). Let γ1 . . . γd ∈ RT denote the columns of G. Note

that γi = Gei = UΣṽi where ṽi ∈ Rd is the i-th row of V ∈ Rd×d (thus ṽ1 . . . ṽd are orthonormal). Then the RHS

can be expressed as
∑d
i=1 ||γi||2 =

∑d
i=1 ||UΣṽi||2 =

∑d
i=1 ||Σṽi||2. Thus the claim (50) can be rephrased as: given

any matrix with singular values Σ and right singular vectors V containing rows ṽ1 . . . ṽd ∈ Rd, we must always ahve

d∑
i=1

||Σei||2 ≤
d∑
i=1

||Σṽi||2 (51)

Since Σ is on both sides, we vary the choice of V . WLOG we can assume that V is a 2× 2 rotation matrix for the
following reasons:

• V is orthonormal. So it can be expressed as a product of Givens rotations and at most one reflection (i.e.,
diag (−ei) Id).

• Reflection does not affect the RHS of (51).

• Thus if no rotation in a 2D subspace reduces the RHS of (51), neither does any V .

Hence assuming ṽ1 = (cos θ,− sin θ) and ṽ2 = (sin θ, cos θ) for some radian θ, we can write down the objective:

min
0≤θ<2π

√
σ2
1 cos

2 θ + σ2
2 sin

2 θ +

√
σ2
1 sin

2 θ + σ2
2 cos

2 θ

We can easily check that the minimum is σ1 + σ2 and the minimizers are θ⋆ ∈
{
0, π2

}
corresponding to V = I2 and

V = [[0, 1], [1, 0]]. The latter violates the structure of V imposed by the SVD (i.e., the ordering σ1 > σ2), thus we
conclude V = I2. We have established that (50) holds with equality iff G = UΣ. This condition is equivalent to
the condition in the statement. Specifically, the forward direction is OT = G⊤G = Σ2. The backward direction is:
if OT = D for some diagonal D ≻ 0, then G⊤G = D which implies there exists some orthonormal U ∈ RT×d such
that G = UD1/2, so D is a diagonal matrix of the squared singular values of G.

Lemma C.5. Let z ∈ Nn0 where zi ∼ Poi(λi) is an independent count for some rate λi > 0. Let x =
∑n
i=1 zi ∈ N0.

Then p(z|x) = Mult(x, λ̄)(z) where λ̄i =
λi∑n

j=1 λj
.



Proof. This is a consequence of the fact that x ∼ Poi(Λ) where Λ =
∑n
i=1 λi. Then for any z ∈ Nn0 and x ∈ N0

such that x =
∑n
i=1 z,

p(z, x) = p(z) =

n∏
i=1

λzii e
−λi

zi!
p(x) =

Λxe−Λ

x!

so that

p(z|x) = p(z, x)

p(x)
=

(
∏
i λ

zi
i )
(
e−Λ

)∏
i zi!

x!

Λxe−Λ
=

x!∏
i zi!

∏
i λ

zi
i

Λx
=

x!∏
i zi!

(∏
i λ̄

zi
i

)
(Λx)

Λx
=

x!∏
i zi!

∏
i

λ̄zii = Mult(x, λ̄)(z)

D Bregman Divergence

Let ψ : Ω→ R be a strictly convex and differentiable function over a convex set Ω ⊆ Rd. The associated Bregman
divergence Dψ(x, y) (from y to x) measures the error of the first-order approximation of ψ around y ∈ Ω at x ∈ Ω.

Dψ(x, y) := ψ(x)− ψ(y)−∇ψ(y)⊤(x− y)

y x

𝜓 D(x, y)𝜓

Since ψ is strictly convex, Dψ(x, y) ≥ 0 and zero iff x = y. We say ψ is σ-strongly convex with respect to the

norm ||·|| if Dψ(x, y) ≥ σ
2 ||x− y||

2
. Dψ(x, y) is clearly assymetric. It is trivially convex and differentiable in x with

the gradient ∇xDψ(x, y) = ∇ψ(x)−∇ψ(y). It is not necessarily convex in y. The two most important examples of
Bregman divergence are as follows:

1. For any A ≻ 0, the A-weighted Euclidean norm ψ : Rd → R induces the A-weighted Euclidean distance
(Appendix L.3).

ψ(x) =
1

2
||x||2A ⇒ Dψ(x, y) =

1

2
||x− y||2A (52)

Clearly, ψ is 1-strongly convex wrt. ||·||A. In particular, ψ(x) = 1
2 ||x||

2
2 is 1-strongly convex wrt. the l2 norm.

2. The negative entropy ψ : ∆d−1 → R induces the KL divergence.

ψ(x) =

d∑
i=1

xi log xi ⇒ Dψ(x, y) = KL(x, y) (53)

Pinsker’s inequality gives us KL(x, y) ≥ 1
2 ||x− y||

2
1, thus ψ is 1-strongly convex wrt. the l1 norm.

D.1 Generalized Pythagorean Theorem

Lemma D.1. For all x, y, z ∈ Ω,

Dψ(y, x) = Dψ(z, x) +Dψ(y, z) + (∇ψ(z)−∇ψ(x))⊤(y − z) (54)

Proof. Let Dψ(y, x) = Dψ(z, x) +Dψ(y, z) + C for some term C. Expanding by definition,

C = Dψ(y, x)−Dψ(z, x)−Dψ(y, z)

= {���ψ(y) −�
��ψ(x) −∇ψ(x)⊤(y − �x)} − {���ψ(z) −�

��ψ(x) −∇ψ(x)⊤(z − �x)} − {���ψ(y) −���ψ(z) −∇ψ(z)⊤(y − z)}
= (∇ψ(z)−∇ψ(x))⊤(y − z)



Lemma D.2. Let C ⊆ Ω be a convex and closed set. Pick any x ∈ Ω. Let

px = argmin
z∈C

Dψ(z, x) (55)

denote the Bregman projection of x ∈ Ω onto C. Then for all y ∈ C,

Dψ(y, x) ≥ Dψ(px, x) +Dψ(y, px) (56)

where the inequality is tight iff ∇ψ(px)−∇ψ(x) is orthogonal to y − px.

Proof. By Lemma D.1, we only need to show (∇ψ(px) − ∇ψ(x))⊤(y − px) ≥ 0 for all y ∈ C. Since px =
argminz∈C f(z) is the minimizer of the convex function f(z) = Dψ(z, x) over C, it follows that ∇f(px)⊤(y−px) ≥ 0
(48). But ∇f(px) = ∇ψ(px)−∇ψ(x).

Example D.1 (Pythagorean theorem). Let Ω = Rd and C ⊆ Rd be a subspace. Let ψ(x) = ||x||22 which induces

the squared Euclidean distance Dψ(x, z) = ||x− z||22 in Rd. Then px ∈ C is the orthogonal projection of x onto the
subspace C where x− px is orthogonal to C. In particular, ∇ψ(px)−∇ψ(x) = px−x is orthogonal to y− px for any

y ∈ C, hence (56) holds with equality, i.e., the usual Pythagorean theorem: ||x− y||22 = ||x− px||22 + ||px − y||
2
2.

D.1.1 Regularized Bregman projection

We can further extend Lemma D.2 to regularize the Bregman projection with a convex function.

Lemma D.3. Let C ⊆ Ω be a convex and closed set. Let l : C → R be convex and differentiable. Pick any x ∈ Ω.
Let

px = argmin
z∈C

Dψ(z, x) + l(z) (57)

denote the Bregman projection of x ∈ Ω onto C regularized by l. Then for all y ∈ C,

Dψ(y, x) + l(y) ≥ Dψ(px, x) +Dψ(y, px) + l(px) (58)

where the inequality is tight iff l is affine, i.e., g = ∇l(z) for any z ∈ C, and ∇ψ(px)−∇ψ(x) + g is orthogonal to
y − px.

Proof. Define f(z) = Dψ(z, x)+ l(z) which is convex and differentiable. Since px = argminz∈C f(z), it follows from
(48) that

0 ≤ ∇f(px)⊤(y − px) = (∇ψ(px)−∇ψ(x) +∇l(px))⊤(y − px)
= Dψ(y, x)−Dψ(px, x)−Dψ(y, px) +∇l(px)⊤(y − px) (Lemma D.1)

≤ Dψ(y, x)−Dψ(px, x)−Dψ(y, px) + l(y)− l(px)

where the inequality uses the convexity of l. Rearranging the terms gives (58). The second inequality is tight iff l
is affine and the first inequality is tight iff ∇f(px)⊤(y − px) = 0, thus (58) is tight iff both conditions hold.

D.2 Other Properties

Lemma D.4 (Duality). Assume Ω is closed. Then Dψ(y, x) = Dψ∗(∇ψ(x),∇ψ(y))

Proof. Since Ω is closed, ψ∗(p) = supx∈Ω p
⊤x − ψ(x) is well defined. Strict convexity implies ∇ψ : Ω → Rd is

invertible, so ∇(ψ∗) = (∇ψ)−1 and ψ∗(p) = p⊤(∇ψ)−1(p) − ψ((∇ψ)−1(p)) by Fact F.4. The latter implies that
ψ∗(∇ψ(z)) = ∇ψ(z)⊤z − ψ(z). We can directly verify the equality:

Dψ∗(∇ψ(x),∇ψ(y)) = ψ∗(∇ψ(x))− ψ∗(∇ψ(y))−∇ψ∗(∇ψ(y))(∇ψ(x)−∇ψ(y))
=
{
∇ψ(x)⊤x− ψ(x)

}
−
{
∇ψ(y)⊤y − ψ(y)

}
− y⊤(∇ψ(x)−∇ψ(y))

= ψ(y)− ψ(x)− ψ(y)⊤(y − x)
= Dψ(y, x)



Lemma D.5 (Mean as minimizer). Let p be a distribution over a closed set S ⊆ Ω. Define x⋆ = argminx∈S Ey∼p[Dψ(y, x)].
Then x⋆ = µp (i.e., the mean of p).

Proof. By the linearity of expectation,

E
y∼p

[Dψ(y, x)] = E
y∼p

[ψ(y)]− ψ(x)−∇ψ(x)⊤(µp − x)

To see µp is optimal, consider any x ∈ S and note

E
y∼p

[Dψ(y, x)]− E
y∼p

[Dψ(y, µp)] = ψ(µp)− ψ(x)−∇ψ(x)⊤(µp − x) = Dψ(µp, x) ≥ 0

which is minimized to zero at x = µp.

E Exponentiated Gradient Descent

Lemma E.1. In mirror descent (1), choose V = ∆d−1 and ψt(w) = −H(w) =
∑d
i=1 wi logwi so that the objective

reduces to (see (53))

wt+1 = argmin
w∈∆d−1

g⊤t w +
1

ηt
KL(w,wt) (59)

where wt ∈ ∆d−1 is assumed full-support. Then wt+1 satisfies

wt+1,i =
wt,i exp(−ηtgt,i)∑d
j=1 wt,j exp(−ηtgt,j)

(60)

Proof I. The objective is convex since KL is strictly convex in the first argument. Slater’s condition holds, so we
can find a solution of the Lagrangian that satisfies the KKT conditions. The Lagrangian is:

L(w, λ, τ) = ηtg
⊤
t w +

d∑
i=1

wi log
wi
wt,i
− λ⊤w + τ(1⊤d w − 1)

The optimal solution satisfies the stationarity condition

∂L(w, λ, τ)

∂wi
= ηtgt,i + log

wi
wt,i

+ 1− λi + τ = 0 ⇔ wi = wt,i exp(−ηtgt,i − 1 + λi + τ)

Since wi ≥ 0, we may use λ = 0d. Enforcing the constraint
∑
j wj = 1 yields τ = − log(

∑
j wt,j exp(−ηtgt,j − 1)).

Plugging it in the expression, we get

wi =
wt,i exp(−ηtgt,i − 1)∑
j wt,j exp(−ηtgt,j − 1)

=
wt,i exp(−ηtgt,i)∑
j wt,j exp(−ηtgt,j)

Proof II. The objective is equivalent to

E
i∼w

[
ηtgt,i + log

wi
wt,i

]
= E
i∼w

[
log

wi
wt,i exp(−ηtgt,i)

]
= E
i∼w

[
log

wi
ut,i

]
− log zt

where zt =
∑
j wt,j exp(−ηtgt,j) and ut = wt/zt ∈ ∆d−1. Thus wt+1 = argminw∈∆d−1 KL(w, u) = u.

The argument in Proof II applies equally to the “KL-constrained RL problem” where the goal is to find the next
policy by maximizing the expected reward r(y) ∈ R for action y ∼ π subject to the contraint KL(π, πt) ≤ C.

πt+1 = argmax
π∈∆d−1

E
y∼π

[r(y)]− 1

ηt
KL(π, πt) ⇒ πt+1(y) ∝ πt(y)er(y)

We can see that (59) is a special case where the action space is i ∈ {1 . . . d} and the reward is the gradient gt,i ∈ R.



F Convex Conjugate

Let ψ : R→ R. Its convex conjugate ψ∗ : R→ R maps a slope p to how much px can overestimate ψ(x):

ψ∗(p) = max
x∈R

{
px− ψ(x)

}
(61)

ψ∗ is always convex no matter what ψ is (because ψ∗(p) is the pointwise maximum of affine functions of p).

-β

ɑɑ

xp

p

q

xq

ψ(x) = αx− β ψ(x) = |x| ψ(x) = x2

⇓ ⇓ ⇓

ɑ

β

1-1

ψ∗(p) = β if p = α, else ∞ ψ∗(p) = 0 if |p| ≤ 1, else ∞ ψ∗(p) = p2

4

Lemma F.1. If ψ is convex and differentiable with an invertible ψ′, then ψ∗(p) = p× (ψ′)−1(p)− ψ((ψ′)−1(p)).

Proof. Since ψ is convex, any xp ∈ R satisfying ψ′(xp) = p is an optimal solution in (61). (This is visually clear in
the rightmost example.) Since ψ′ is invertible, xp = (ψ′)−1(p) is unique.

Lemma F.2. If ψ is convex and differentiable with an invertible ψ′, then ψ∗ is differentiable with (ψ∗)′ = (ψ′)−1.

Proof. By Lemma F.1, we have ψ∗(p) = p× (ψ′)−1(p)− ψ((ψ′)−1(p)). An inverse function is differentiable, so we
can use the product rule and the chain rule to obtain

(ψ∗)′(p) = (ψ′)−1(p) + p× ((ψ′)−1)′(p)− ψ′((ψ′)−1(p))︸ ︷︷ ︸
p

×((ψ′)−1)′(p) = (ψ′)−1(p)

Lemma F.3. ψ(x) ≥ ψ∗∗(x) for all x ∈ R. If ψ is convex and differentiable with an invertible ψ′, then ψ = ψ∗∗.

Proof. For the first claim,

ψ∗(p) ≥ px− ψ(x) ∀x, p ∈ R ⇔ ψ(x) ≥ px− ψ∗(p) ∀x, p ∈ R

⇔ ψ(x) ≥ max
p∈R

{
xp− ψ∗(p)

}
= ψ∗∗(x) ∀x ∈ R

For the second claim, since ψ′ : R→ R is a bijection,

ψ∗∗(x) = max
p∈R

{
xp− ψ∗(p)

}
= max

y∈R

{
xψ′(y)− ψ∗(ψ′(y))

}
By Lemma F.1, the last term becomes

ψ∗(ψ′(y)) = ψ′(y)× (ψ′)−1(ψ′(y))− ψ((ψ′)−1(ψ′(y))) = ψ′(y)y − ψ(y)

https://math.stackexchange.com/questions/251405/alternative-proof-for-differentiability-of-inverse-function


Plugging this back in, we have

ψ∗∗(x) = max
y∈R

{
ψ(y)− ψ′(y)(y − x)

}
Using the fact that ψ is strongly convex (implied by the premise), we can easily verify that the RHS is maximized
at y = x, thus ψ∗∗(x) = ψ(x). Intuitively, the expression considers all lines tangent to ψ and picks the one that
gives minimum underestimation at x.

Exercise 1. Verify that Lemma F.1, F.2, and F.3 hold for ψ(x) = x2.

F.1 Vector-Valued Input

The results for scalar-valued input easily generalize to vector-valued input ψ : Rd → R. We summarize them below.

Fact F.4. Let ψ : Rd → R. Its convex conjugate ψ∗ : Rd → R is defined as

ψ∗(p) = max
x∈R

{
p⊤x− ψ(x)

}
(62)

ψ∗ is convex and ψ(x) ≥ ψ∗∗(x) for all x ∈ Rd. If ψ is convex and differentiable with an invertible gradient
∇ψ : Rd → Rd,

ψ∗(p) = p⊤(∇ψ)−1(p)− ψ((∇ψ)−1(p)) (63)

∇(ψ∗) = (∇ψ)−1 (64)

ψ = ψ∗∗ (65)

G Kronecker Product

The Kronecker product C = A⊗B of A ∈ Rm×d and B ∈ Rn×l is defined as

C =

A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB

 ∈ Rmn×dl

(i.e., md copies of B ∈ Rn×l, each scaled by Ai,j ∈ R). Specifically,

C(i1−1)n+j1,(i2−1)l+j2 = Ai1,i2 ×Bj1,j2 (66)

for i1 ∈ [m], j1 ∈ [n], i2 ∈ [d], and j2 ∈ [l] (we shorthand [N ] = {1 . . . N}). One way to see this is: for each
row i1 of A, we go through all the rows j1 of B. Let vec : Rm×n → Rmn denote row-major vectorization (e.g.,
vec([[a, b]; [c, d]]) = (a, b, c, d)). Then (reference)

vec(ABC) = (A⊗ C⊤)vec(B) (67)

(e.g., vec(uv⊤) = u⊗ v). By the mixed-product property,

(A⊗B)(C ⊗D) = (AC)⊗ (BD) (68)

Matrix transpose distributes without reordering as: (A⊗B)⊤ = A⊤ ⊗B⊤.

G.1 Optimal Kronecker Decomposition

For any A ∈ Rm×d and B ∈ Rn×l, we would like to define a permutation of the mdnl values in A ⊗ B ∈ Rmn×dl
into the shape md× nl such that

rearrange(A⊗B) = vec(A)vec(B)⊤ (69)

https://en.wikipedia.org/wiki/Vectorization_(mathematics)#cite_note-RowMajor-1


We can reverse-engineer the correspondence. Since

(A⊗B)(i1−1)n+j1,(i2−1)l+j2 = Ai1,i2 ×Bj1,j2 = (vec(A)vec(B)⊤)(i1−1)d+i2,(j1−1)l+j2

for i1 ∈ [m], j1 ∈ [n], i2 ∈ [d], and j2 ∈ [l], we can define rearrange : Rmn×dl → Rmd×nl by

rearrange(H)(i1−1)d+i2,(j1−1)l+j2 := H(i1−1)n+j1,(i2−1)l+j2 (70)

We will assume that m, d, n, l are known when we call this function (for the given input of shape mn × dl). By
definition, (70) satisfies (69). A useful property of the function is that it is an involution (i.e., its own inverse):

rearrange(rearrange(H)) = H (71)

One way to see this is to view the function simply as changing the way how we read the mdnl input values by
(i1, j1, i2, j2) 7→ (i1, i2, j1, j2) where we swap two axes, so applying it again recovers the original way. Van Loan
and Pitsianis (1993) proposed the rearrangement for finding an optimal Kronecker decomposition of a matrix due
to the following property:

Lemma G.1. Let C ∈ Rmn×dl. For any A ∈ Rm×d and B ∈ Rn×l,

||C −A⊗B||F =
∣∣∣∣rearrange(C)− vec(A)vec(B)⊤

∣∣∣∣
F

Proof. Using (69), the obvious linearity of rearrange, and the fact that ||·||F is unaffected by rearranging values,∣∣∣∣rearrange(C)− vec(A)vec(B)⊤
∣∣∣∣
F
= ||rearrange(C)− rearrange(A⊗B)||F
= ||rearrange(C −A⊗B)||F
= ||C −A⊗B||F

Corollary G.2. Let C ∈ Rmn×dl and

A⋆, B⋆ = argmin
A∈Rm×d,B∈Rn×l

||C −A⊗B||F

A solution is given by

A⋆ = a× view(u1,m, d) rearrange(C) =
∑
i

σiuiv
⊤
i

B⋆ = b× view(v1, n, l)

where a×b = σ1 andM = view(u, d1, d2) arranges u ∈ Rd1d2 into a matrix of shapeM ∈ Rd1×d2 in row-major order
(i.e., view in PyTorch). In other words, optimal Kronecker decomposition reduces to optimal rank-1 approximation
of rearrange(C) ∈ Rmd×nl, which is solvable by SVD.

G.2 Kronecker Product Between Square Matrices

If A ∈ Rm×m and B ∈ Rn×n have eigenvalues λ1 . . . λm and µ1 . . . µn, the mn eigenvalues of A⊗B ∈ Rmn×mn are
λ1µ1 . . . λmµn. It follows that

tr (A⊗B) = tr (A) tr (B) (72)

A,B ⪰ 0 ⇒ (A⊗B)p = Ap ⊗Bp ∀p ∈ R (73)

A,B ⪰ 0 ⇒ A⊗B ⪰ 0 (74)

From (74), we can also infer that6

A ⪰ A′ ⪰ 0, B ⪰ B′ ⪰ 0 ⇒ A⊗B ⪰ A′ ⊗B′ (75)

6A⊗B = (A′ + C)⊗ (B′ +D) = A′ ⊗B′ +A′ ⊗D + C ⊗B′ + C ⊗D ⪰ A′ ⊗B′ since C = A−A′ ⪰ 0 and D = B −B′ ⪰ 0.



G.3 Outer Product Bound

Lemma G.3. Let A ∈ Rm×n be any matrix where rank (A) ≤ r. If a = vec(A) ∈ Rmn,

aa⊤ ⪯ r(AA⊤)⊗ In
aa⊤ ⪯ rIm ⊗ (A⊤A)

Proof. LetA =
∑r
k=1 σkukv

⊤
k ∈ Rm×n be a thin SVD. Since vec is linear, a =

∑r
k=1 σkvec(ukv

⊤
k ) =

∑r
k=1 σk (uk ⊗ vk).

Thus

aa⊤ =

(
r∑

k=1

σk (uk ⊗ vk)

)(
r∑

k=1

σk (uk ⊗ vk)

)⊤

⪯ r
r∑

k=1

σ2
k (uk ⊗ vk) (uk ⊗ vk)

⊤
(76)

= r

r∑
k=1

σ2
k

(
uku

⊤
k

)
⊗
(
vkv

⊤
k

)
⪯ r

r∑
k=1

σ2
k

(
uku

⊤
k

)
⊗ In (77)

= r(AA⊤)⊗ In

(76) uses the fact that (
∑r
i=1 wi)(

∑r
i=1 wi)

⊤ ⪯ r
∑r
i=1 wiw

⊤
i for any w1 . . . wr ∈ Rd.7 (77) follows from (75) since

In ⪰ vkv⊤k .

We invoke the fact that the geometric mean of PSD matrices respects Loewner order (aka. “operator monotone”):

Fact G.4. Let Y1 ⪰ X1 ⪰ 0 and Y2 ⪰ X2 ⪰ 0 be PSD (square) matrices. Then Y α1 Y
1−α
2 ⪰ Xα

1 X
1−α
2 for all

α ∈ [0, 1].

Corollary G.5. Let A ∈ Rm×n be any matrix where rank (A) ≤ r. If a = vec(A) ∈ Rmn,

aa⊤ ⪯ r(AA⊤ ⊗A⊤A)1/2 (78)

Proof. By Lemma G.3, we have r(AA⊤) ⊗ In ⪰ aa⊤ and rIm ⊗ (A⊤A) ⪰ aa⊤. Applying Fact G.4, we have
aa⊤ ⪯ r((AA⊤)⊗ In)(Im ⊗ (A⊤A)) = r(AA⊤ ⊗A⊤A).

H Hessian

Let (x, y) ∈ X ×Y denote an input-label pair. Let fw : X → RK denote a neural network parameterized by w ∈ Rd.
Let L : RK × Y → R denote a loss function differentiable in the first argument. The most important loss is the
cross-entropy loss with Y = {1 . . .K} given by L(z, y) = − log pz(y) = log(

∑
k e

zk)− zy, whose gradient is famously

∇zL(z, y) = pz − ey ∈ RK where ey ∈ {0, 1}K is the y-th standard basis. We typically rely on the gradient

∇wL(fw(x), y) =
∂L(fw(x), y)

∂w
∈ Rd (79)

for optimizing fw. In contrast, the Hessian

Hx,y(w) = ∇2
wL(fw(x), y) =

∂2L(fw(x), y)

∂w2
∈ Rd×d (80)

is avoided because of the d2 size, even though it yields a much faster convergence rate (e.g., Newton’s method). It
is informative to analyze (80) nonetheless. As in backpropagation, we first decompose it by disentangling fw and
L via the chain rule (Appendix J). This yields

Hx,y(w) = ∇wfw(x)︸ ︷︷ ︸
d×K

(
∇2
zL(z, y)

∣∣
z=fw(x)

)
︸ ︷︷ ︸

K×K

∇wfw(x)⊤︸ ︷︷ ︸
K×d

+∇2
wfw(x)︸ ︷︷ ︸
d×d×K

(
∇zL(z, y)

∣∣
z=fw(x)

)
︸ ︷︷ ︸

K×1

(81)

7This follows from Jensen’s inequality and the convexity of f(z) = z2 (i.e., f(
∑r
i=1 zi) ≤ (1/r)

∑r
i=1 f(zi)). Pick any x ∈ Rd and

denote zi = x⊤wi. Then x⊤
(∑r

i=1 wi
) (∑r

i=1 wi
)⊤

x =
(∑r

i=1 zi
)2 ≤ r

(∑r
i=1 z

2
i

)
= r

(∑r
i=1 x

⊤wiw⊤
i x

)
= x⊤

(
r
∑r
i=1 wiw

⊤
i

)
x.



The first “outer” term, involving only the d×K Jacobian of fw and the K ×K Hessian of L, is called the Gauss-
Newton (GN) component of the Hessian. GN is empirically found to be a good approximation of the Hessian
(Sankar et al., 2021); it is exact if fw is linear (since the second term vanishes). Given a population distribution
pop over (x, y) and assuming the cross-entropy loss, we can further relate GN with the gradient (79).

Lemma H.1. Let L(z, y) = − log pz(y). Then

E
(x,y)∼pop

[
∇wfw(x)

(
∇2
zL(z, y)

∣∣
z=fw(x)

)
∇wfw(x)⊤

]
= E

x∼pop
ŷ∼fw(x)

[
∇wL(fw(x), ŷ)∇wL(fw(x), ŷ)⊤

]
= I(w) (82)

The RHS of (82) coincides with the Fisher information matrix I(w) (i.e., the covariance of ∇wL(fw(x), y) where
y ∼ fw(x)).8

Proof of Lemma H.1. Note that regardless of the label y ∈ {1 . . .K}, the Jacobian of the cross-entropy loss is the
same as the Jacobian of the softmax function:

∇2
zL(z, y) = ∇z(pz − ey) = ∇zpz = diag (pz)− pzp⊤z

Using the fact that E[eŷ] = pz and E[eŷe
⊤
ŷ ] = diag (pz) where ŷ ∼ pz, we can express this as a vector outer product:

E
ŷ∼pz

[
(pz − eŷ)(pz − eŷ)⊤

]
= diag (pz)− pzp⊤z

Putting together, we have

E
(x,y)∼pop

[
∇wfw(x)

(
∇2
zL(z, y)

∣∣
z=fw(x)

)
∇wfw(x)⊤

]
= E
x∼pop

[
∇wfw(x)

(
diag

(
pfw(x)

)
− pfw(x)p

⊤
fw(x)

)
∇wfw(x)⊤

]
= E

x∼pop
ŷ∼fw(x)

[
∇wfw(x)(pfw(x) − eŷ)(pfw(x) − eŷ)⊤∇wfw(x)⊤

]
= E

x∼pop
ŷ∼fw(x)

[
∇wL(fw(x), ŷ)∇wL(fw(x), ŷ)⊤

]
where the last equality is the chain rule: ∇wL(fw(x), ŷ) = ∇wfw(x)(∇zL(z, ŷ)

∣∣
z=fw(x)

).

I The Hessian View

Let w ∈ Rd denote the weight of (some layer of) a neural network. Given a labeled input (x, y) ∈ X × {1 . . .K},
let fw(x) ∈ RK denote the final logits and L(fw(x), y) = − log pfw(x)(y) ∈ R the cross-entropy loss (for simplicity

we will pretend that this is convex in w). Let gx,y(w) =
∂L(fw(x),y)

∂w ∈ Rd and Hx,y(w) =
∂2L(fw(x),y)

∂w2 ∈ Rd×d the
gradient/Hessian on (x, y). Let g(w) = E[gx,y(w)] and H(w) = E[Hx,y(w)] denote the expected gradient/Hessian
where (x, y) ∼ pop. We will assume that the fastest way to converge to w⋆ = argminw E(x,y)∼pop[L(fw(x), y)] is
Newton’s method:

w ← w − ηH(w)−1g(w) (83)

Can we estimate the Hessian using only the gradient? We have

H(w)
(81)
≈ HGN(w)

(H.1)
= I(w) = E

x∼pop
ŷ∼fw(x)

[
gx,ŷ(w)gx,ŷ(w)

⊤] = Cov
x∼pop
ŷ∼fw(x)

(gx,ŷ(w)) (84)

where HGN(w) is the Gauss-Newton component and I(w) is the Fisher matrix. The well-known covariance char-
acterization follows since E[gx,ŷ(w)] = 0d for ŷ ∼ fw(x). The Fisher matrix is difficult to estimate, so we typically
approximate it by swapping the model distribution with the label distribution, i.e., the “empirical Fisher” matrix:

Iemp(w) = E
(x,y)∼pop

[
gx,y(w)gx,y(w)

⊤] = Cov
(x,y)∼pop

(gx,y(w)) + g(w)g(w)⊤ (85)

8The expected Hessian H(w) = E(x,y)∼pop[Hx,y(w)] = I(w) + E(x,y)∼pop[∇2
wfw(x)(∇zL(z, y)

∣∣
z=fw(x)

)] is still not exactly Fisher

since the second term does not vanish in general. Nonetheless, many works on second-order optimization assume H(w) ≈ I(w).



The motivation is clear: if this is a faithful approximation of H(w), we can easily estimate it by only using
the gradient on the labeled data. It is somewhat justified by the fact that I(w) → Iemp(w) assuming w →
w⋆ (since pfw⋆ (x) = pop(·|x) and g(w⋆) = 0d), but in general it is highly flawed (see Section 2.1 of Grosse
(2021)) and results in strange behaviors when used directly in (83). For instance, if gx,y(w) happens to have
small covariance but large on average, we have Iemp(w) ≈ g(w)g(w)⊤ which specifies an “inverse gradient scaling”
w ← w − η(g(w)g(w)⊤)−1g(w) where the weights with the largest gradient values are updated the least (Kunstner
et al., 2019).9 We can heuristically prevent the quadratic inverse scaling by taking the square root, i.e., use

H(w) ≈ I1/2emp(w) = E
(x,y)∼pop

[
gx,y(w)gx,y(w)

⊤]1/2
Further using the usual diagonal approximation gx,y(w)gx,y(w)

⊤ ≈ diag(g2x,y(w)) for practicality, we have

H(w) ≈ I1/2emp,diag(w) = E
(x,y)∼pop

[
diag

(
g2x,y(w)

)]1/2
= diag

(
E

(x,y)∼pop

[
g2x,y(w)

]1/2)
(86)

Let v ≈ E(x,y)∼pop[g
2
x,y(w)] ∈ Rd denote a finite-sample estimator (e.g., Adam uses a bias-corrected EMA of

g2x1,y1(w) . . . g
2
xN ,yN (w) ∈ Rd). Using the estimator in w ← w − ηI−1/2

emp,diag(w)g(w), we obtain the per-parameter
update

wj ← wj −
η
√
vj
g(wj) (RMSProp/Adam)

Since I
1/2
emp,diag(w) is also intended to approximate I(w) (not just the Hessian), Adam can be further motivated as an

approximation of natural gradient descent w ← w − I(w)−1g(w) which optimizes the loss in an information-based
transformation of the coordinate system (thereby invariant to the underlying geometry).

I.1 The Hessian View of Shampoo

Let W ∈ Rm×n denote a weight matrix of a neural network. Let L : Rm×n → R be a random loss function for
this weight (i.e., random in data). Let G = ∇L(W ) ∈ Rm×n. Let w = vec(W ) ∈ Rmn and g = vec(G) ∈ Rmn,
with the corresponding reshaped loss l : Rmn → R defined as l(vec(W )) = L(W ). Newton’s method corresponds to

w ← w− ηH−1g where H = ∇2l(w) ∈ Rmn×mn. Again we approximate H ≈ Ifisher ≈ I1/2emp where Iemp = E[gg⊤] ∈
Rmn×mn. Now suppose there are matrices A ∈ Rm×m and B ∈ Rn×n such that Iemp ≈ A⊗B. Then we can update
w ← w − η(A−1/2 ⊗B−1/2)g which is equivalent to

W ←W − ηA−1/2G(B−1/2)⊤ (87)

by (67). Thus we seek

A⋆, B⋆ = argmin
A∈Rm×m, B∈Rn×n

||Iemp −A⊗B||F (88)

By Corollary G.2, vec(A⋆) ∝ u1 and vec(B⋆) ∝ v1 where u1 ∈ Rm2

and v1 ∈ Rn2

are the top singular vectors

of Ĩemp = rearrange(Iemp) ∈ Rm2×n2

. We can easily verify that Ĩemp = E[G ⊗ G] using (69) and (71). We

can estimate the top singular vectors of Ĩemp by the power method: use some initial l0 ∈ Rm2

and r0 ∈ Rn2

and

repeat li+1 = Ĩempri and ri+1 = (Ĩemp)
⊤li. It is well known that li

||li|| → u1 and ri
||ri|| → v1 (assuming σ1 > σ2 for

simplicity). Now choose l0 = vec(Im) and r0 = vec(In). Then one iteration yields

l1 = E[G⊗G]r0 = vec(E[GG⊤])

r1 = E[G⊗G]⊤l0 = vec(E[G⊤G])

9The problem worsens if we use the batched gradient estimator gB(w) = 1
|B|

∑
(x,y)∈B

∂L(fw(x),y)
∂w

in (85) (which is closer to the

practice). Since E[gB(w)] = g(w) and CovB(gB(w)) = 1
|B|Covx,y(gx,y(w)), the empirical Fisher estimator using the batched gradient

estimator becomes

E
B∼pop|B|

[
gB(w)gB(w)⊤

]
=

1

|B|
Iemp(w) +

(
1−

1

|B|

)
g(w)g(w)⊤

which shows that g(w)g(w)⊤ dominates the estimate as the batch size grows.



Treating these as rough estimates of (some scaling of) u1 and v1, we can argue that using (88) in (87) yields (with
an appriate η)

W ←W − ηE[GG⊤]−1/2 G E[G⊤G]−1/2 (89)

This corresponds to using the square of the Shampoo preconditioner A2
shampoo = L1/2 ⊗R1/2, since Shampoo with

EMA specifies (Section 6.1)

W ←W − ηE[GG⊤]−1/4 G E[G⊤G]−1/4

Morwani et al. (2024) justify the identity initialization as a way of making cos(l1, u1) =
(v⊤1 r0)σ1√
(v⊤i r0)

2σ2
i

closer to 1

(similarly for r1, v1). Specifically, they show that r0 = vec(In) yields v
⊤
1 r0 > v⊤i r0 for i ≥ 2.

I.1.1 Exact decomposition

Lemma I.1 (Morwani et al. (2024)). If Ĩemp = rearrange(Iemp) = E[G⊗G] ∈ Rm2×n2

is rank-1,

Iemp =
E[GG⊤]⊗E[G⊤G]

tr (E[GG⊤])
∈ Rmn×mn (90)

Proof. Let Ĩemp = σuv⊤ be a rank-1 SVD. This implies Iemp = σU ⊗ V where u = vec(U) and v = vec(V ).

Shampoo’s iteration gives us Ĩempr0 = σuv⊤r0 = vec(E[GG⊤]) where r0 = vec(In). Let v⊥ = r0 − Projspan(v)(r0)
where

Projspan(v)(r0) = vv⊤r0 = (vec(In)
⊤vec(V ))v = tr (V ) v

Then

vec(E[GG⊤]) = σuv⊤(v⊥ + tr (V ) v) = σtr (V )u

E[GG⊤] = σtr (V )U

which also implies tr
(
E[GG⊤]

)
= σtr (V ) tr (U). Similarly, E[G⊤G] = σtr (U)V . We now obtain (90) by re-

expressing Iemp = σU ⊗ V .

The rank-1 assumption in Lemma I.1 is unrealistically strong (likely holds only for linear logistic regressor where
G ∈ Rm×1). But it suggests the following “idealized” shampoo iteration which corresponds to the Newton step

w ← w − ηH−1g on w = vec(W ) ∈ Rmn using H ≈ Ifisher ≈ I1/2emp = 1
tr(E[GG⊤])

E[GG⊤]1/2 ⊗E[G⊤G]1/2.

IdealizedShampooIteration
Input: Current W ∈ Rm×n, random loss L : Rm×n → R, learning rate η > 0

1. Compute G = ∇L(W ) ∈ Rm×n.

2. Update the estimates E[GG⊤] ∈ Rm×m and E[G⊤G] ∈ Rn×n (e.g., bias-corrected EMA).

3. W ←W − ηtr
(
E[GG⊤]

)
E[GG⊤]−1/2 G E[G⊤G]−1/2

J Vector Calculus Scratch Pad

Let w ∈ Rd. We can verify

∇wg(f(w)) = (∇wf(w))(∇f(w)g(f(w))) ∀f : Rd → RM , g : RM → RK (chain rule)

∇w(F (w)g(w)) = (∇wF (w))g(w) + F (w)(∇wg(w))⊤ ∀g : RD → RK , F : Rd → RD×K (product rule)



where ∇wF (w) ∈ Rd×D×K is the Jacobian of F (w) ∈ RD×K . Let z = z(w) ∈ RK (activations) and L = L(z) ∈ R
(loss). We write

∇wL ∈ Rd : (∇wL)i =
∂L

∂wi
(gradient of the loss wrt. the weights)

∇zL ∈ RK : (∇zL)k =
∂L

∂zk
(gradient of the loss wrt. the activations)

∇wz ∈ Rd×K : (∇wz)i,k =
∂zk
∂wi

(Jacobian of the activations wrt. the weights)

∇2
wL ∈ Rd×d : (∇2

wL)i,j =
∂2L

∂wi∂wj
(Hessian of the loss wrt. the weights)

∇2
zL ∈ RK×K : (∇2

zL)k,l =
∂2L

∂zk∂zl
(Hessian of the loss wrt. the activations)

∇2
wz ∈ Rd×d×K : (∇2

wz)i,j,k =
∂2zk

∂wi∂wj
(Hessians of the activations wrt. the weights)

By the chain rule, we have

∇wL = (∇wz)(∇zL)
∇w(∇zL) = (∇wz)(∇2

zL)

By the product rule, we have

∇2
wL = (∇2

wz)(∇zL) + (∇wz)(∇2
zL)(∇wz)⊤

K Nonnegative Matrix Factorization (NMF)

Let C ∈ Rm×n
≥0 and r ∈ N. We wish to find A ∈ Rm×r

≥0 and B ∈ Rr×n≥0 such that C ≈ AB. A natural divergence
between nonnegative values is the I-divergence (Finesso and Spreij, 2006; Lee and Seung, 1999). For any a, b ≥ 0,
the I-divergence is defined as

IDiv(a, b) = a log
a

b
− a+ b (91)

where 0
0 = 0 and 0 log 0 = 0. (91) is nonnegative due to the convexity of x log x. For multi-dimensional inputs

p, q (of the same shape), we define IDiv(p, q) =
∑n
i=1 IDiv(pi, qi). In particular, IDiv(p, q) = KL(p, q) if p, q are

distributions. Minimizing IDiv(C,AB) over nonnegative A,B is equivalent to

A⋆, B⋆ = argmin
A∈Rm×r

≥0
,B∈Rr×n

≥0

m∑
i=1

n∑
j=1

−Ci,j log

(
r∑

k=1

Ai,kBk,j

)
+

r∑
k=1

Ai,kBk,j︸ ︷︷ ︸
JC(A,B)

(92)

We have a manifold of optimal solutions JC(A
⋆, B⋆) = JC(αA

⋆, 1
αB

⋆). The objective is biconvex. Putting aside
the nonnegative constraints for now, the gradient is given by (we focus on A since B is analogous):

∂JC(A,B)

∂Ai,k
= −

∑n
j=1 Ci,jBk,j∑r
l=1Ai,lBl,j

+

n∑
j=1

Bk,j

In general, there is no closed-form solution for a stationary point. We can still do projected gradient descent on A,
but a more popular approach is the multiplicative update (95) which preserves nonnegativity.

Rank one. If r = 1, the stationary point has a closed-form solution.10

Ai,1 = −
∑n
j=1 Ci,j

Ai,1
+

n∑
j=1

B1,j = 0 ⇔ Ai,1 =

∑n
j=1 Ci,j∑n
j=1B1,j

⇔ A =
C1n
B1n

10From the generative perspective of the next section, this happens largely because we remove the “latent variable” and the “sum
inside log”.



Similarly, we have the stationary B =
1⊤mC
1⊤mA

. We may constrain A ∈ Rm×1 to satisfy 1⊤mA = 1⊤mC1n (using scale

invariance) so that A = C1n and B =
1⊤mC

1⊤mC1n
. Since they are nonnegative, they are a solution to (92). Thus

rank-one NMF is easy (even though it is still technically nonconvex).

K.1 A Generative Story

We assume a model parameterized by A ∈ Rm×r
≥0 and B ∈ Rr×n≥0 . It generates the latent variable Z ∈ Nm×n×r

0 by

Zi,j,k ∼ Poi(Ai,kBkj)

Then it generates the observation C ∈ Nm×n
0 by Ci,j =

∑r
k=1 Zi,j,k. Since Ci,j ∼ Poi(

∑r
k=1Ai,kBkj) by the usual

property of Poisson, the marginal distribution over C is

pA,B(C) =
∏
i,j

(
∑r
k=1Ai,kBkj)

Ci,je−
∑r

k=1 Ai,kBkj

Ci,j !

The joint distribution over Z and C satisfying Ci,j =
∑r
k=1 Zi,j,k is

pA,B(Z,C) =
∏
i,j,k

(Ai,kBkj)
Zi,j,ke−Ai,kBkj

Zi,j,k!

The posterior over Zi,j ∈ Nr0 conditioned on Ci,j follows the multinomial distribution (Lemma C.5):

pA,B(Zi,j |Ci,j) = Mult

(
Ci,j ,

(
Ai,kBkj∑
lAi,lBlj

)r
k=1

)
(Zi,j) (93)

We seek the MLE, i.e., the maximizer of the marginal log-likelihood:

A⋆, B⋆ = argmax
A∈Rm×r

≥0
,B∈Rr×n

≥0

log pA,B(C)

= argmin
A∈Rm×r

≥0
,B∈Rr×n

≥0

m∑
i=1

n∑
j=1

−Ci,j log

(
r∑

k=1

Ai,kBkj

)
+

r∑
k=1

Ai,kBkj (94)

We see that (94) and (92) are the same. But now that we have a generative story, we can do EM. At any A,B, we
can maximize the ELBO using the exact posterior (93) to find

A′, B′ = argmax
Â∈Rm×r

≥0
,B̂∈Rr×n

≥0

E
Z∼pA,B(·|C)

[
log pÂ,B̂(Z,C)

]
= argmax
Â∈Rm×r

≥0
,B̂∈Rr×n

≥0

∑
i,j,k

Ci,j

(
Ai,kBkj∑
lAi,lBlj

)
log(Âi,kB̂k,j)− Âi,kB̂k,j

As usual with EM, the sum inside log is moved outside. Solving the stationary condition, we have the blockwise
update11

A′
i,k = Ai,k ×

(∑
j Ci,jBk,j∑
lAi,lBlj

)
/

∑
j

Bk,j

 B′
k,j = Bk,j ×

(∑
i Ci,jAi,k∑
lAi,lBlj

)
/

(∑
i

Ai,k

)
(95)

Note that the multiplicative update preserves nonnegativity (assuming A,B are nonnegative). In matrix form, the
update is

R = C ⊘AB A′ = A⊙ (RB⊤ ⊘ 1⊤nB
⊤) (96)

B′ = B ⊙ (AR⊤ ⊘A⊤1m)

where ⊘ is elementwise division (broadcasted) and ⊙ is elementwise multiplication.

11There’s a bit more going on here, since we update one variable while holding the other fixed. This version of EM is so-called
“Generalized EM”. It simply means breaking the M-step into sub-updates for blocks of parameters; as long as the sub-updates do not
decrease the MLL, the convergence property of EM remains.



K.2 AdamNMF

Using (96), we can easily motivate a rank-r generalization of Adafactor (Section 5.1). A pseudocode is given below.
The memory overhead in estimating the second gradient moment is O((m+ n)r) as opposed to O(mn) in Adam.

AdamNMF
Input: initial layer weight W1 ∈ Rm×n, rank r ≥ 1, learning rate η > 0, initialization range ϵ > 0

1. A0 ∼ Unif(0, ϵ)m×r, B0 ∼ Unif(0, ϵ)r×n

2. For t = 1 . . . T :

(a) Receive the gradient Gt ∈ Rm×r, compute the elementwise square G2
t .

(b) Do one round of EM to decompose G2
t ≈ AtBt using At−1 and Bt−1 as initialization:

Rt−1 ← G2
t ⊘At−1Bt−1 At ← At−1 ⊙

(
Rt−1B

⊤
t−1 ⊘ 1⊤nB

⊤
t−1

)
Bt ← Bt−1 ⊙

(
At−1R

⊤
t−1 ⊘A⊤

t−11m
)

(c) Wt+1 ←Wt − η Gt√
AtBt

3. Return WT+1 ∈ Rm×n

L Vector Spaces

L.1 Normed Spaces

The function ||·|| : V → R≥0 is a norm on a vector space V if it satisfies (i) the triangle inequality ||u+ v|| ≤
||u||+||v||, (ii) the absolute homogeneity ||αu|| = |α|·||u||, and (iii) the point-separating property ||u|| = 0⇒ u = 0d.
For V = Rd, a broad family of norms is given by the lp-norm:

||w||p :=

(
d∑
i=1

|wi|p
)1/p

∀p ≥ 1

This includes the popular l2, l1, l∞ norms:

||w||2 =

√∑
i

w2
i (Euclidean)

||w||1 =
∑
i

|wi| (taxicab)

||w||∞ := lim
p→∞

||w||p = max
i
|wi| (maximum)

On the other hand, the “l0 norm” defined as ||w||0 := |{i : wi ̸= 0}| is often mentioned in the context of promoting
sparsity, but it is not a norm (e.g., violates the traingle inequality).

L.2 Inner Product Spaces

The function ⟨·, ·⟩ : V×V → R is an inner product on the (real) vector space V if it is symmetric, linear in the first
argument, and positive-definite (i.e., ⟨u, u⟩ ≥ 0 with equality iff u is zero). An inner product induces a canonical
norm by ||u|| =

√
⟨u, u⟩, thus an inner product space always a normed space. The most important inner product

on V = Rd is the dot product ⟨u, v⟩ = u⊤v =
∑
i uivi which induces the l2 norm. In contrast, there is no inner

product that induces the l1 or l∞ norm.



L.2.1 Dual norm

For any norm ||w||, the dual norm ||·||∗ : V → R≥0 is defined as12

||v||∗ := sup
w∈V: ||w||≤1

w⊤v (97)

The definition arises naturally in an effort to bound the dot product since

w⊤v ≤ ||w|| ||v||∗ (98)

for all v, w ∈ V. (98) is referred to as “generalized Cauchy-Schwarz” or more accurately (the finite-dimensional
version of) Hölder’s inequality. It can be verified that the dual norm is a norm itself and an involution (i.e.,
||w||∗∗ = ||w||).

L.3 Weighted Euclidean Norm

For any d× d positive-definite matrix A ≻ 0, we define a “weighted Euclidean norm” by

||u||A :=
∣∣∣∣∣∣A1/2u

∣∣∣∣∣∣
2
=
√
u⊤Au (99)

We can directly check that ||·||A is a norm on V = Rd.13 To derive the dual norm, we observe

||v||∗ = max
w∈Rd: w⊤Aw=1

w⊤v

= max
u∈Rd: u⊤u=1

u⊤A−1/2v (u = A1/2w)

≤ max
u∈Rd: u⊤u=1

||u||2
∣∣∣∣∣∣A−1/2v

∣∣∣∣∣∣
2

(Cauchy-Schwarz)

=
√
v⊤A−1v

= ||v||A−1

Choosing u ∝ A−1/2v yields a solution that makes the bound tight, thus ||v||∗ = ||v||A−1 . See this note for a proof
using the method of Lagrangian multipliers.

L.3.1 General A ⪰ 0

Let A ⪰ 0 with r = rank (A) ≤ d. Let A = V ΛV ⊤ denote a thin eigendecomposition where V ∈ Rd×r is an
orthonormal basis of range (A) and Λ = diag (λ1 . . . λr) for λi > 0. Pick any w ∈ range (A). Then w = V x for some
nonzero x ∈ Rr, so that

w⊤Aw = x⊤V ⊤V ΛV ⊤V x = x⊤Λx > 0

Thus ||u||A =
√
u⊤Au is a norm on V = range (A). To derive the dual norm, we can take similar steps:

||v||∗ = max
w∈Rd: w⊤Aw=1

w⊤v

= max
x∈Rr: x⊤Λx=1

x⊤V ⊤v

= max
u∈Rr: u⊤u=1

u⊤Λ−1/2V ⊤v (u = Λ1/2x)

≤ max
u∈Rd: u⊤u=1

||u||2
∣∣∣∣∣∣Λ−1/2V ⊤v

∣∣∣∣∣∣
2

(Cauchy-Schwarz)

=
√
v⊤V Λ−1V v

=
√
v⊤A+v

= ||v||A+

12This is a different definition of the dual norm from Hilbert spaces (i.e., inner product spaces in infinite dimensions). There, the dual
norm is defined as ||v||∗ := supw∈V: ||w||≤1 ⟨w, v⟩. One can verify that ||v||∗ = ||v|| (“self-dual”) using the standard Cauchy-Schwarz

inequality |⟨u, v⟩| ≤ ||u|| ||v||. (The Cauchy-Schwarz inequality can be proved directly without dual norms, so there is no circular
argument here.)

13We can also view ||u||A as the canonical norm of the inner product ⟨u, v⟩A := u⊤Av on V = Rd.

https://karlstratos.com/notes/lagrangian.pdf


We can again verify that choosing u ∝ Λ−1/2V ⊤v achieves this bound, thus ||v||∗ = ||v||A+ . This subsumes the above
analysis when r = d. When r < d (i.e., A is rank-deficient), we have Rd = range (A) ⊥ null(A) (since A is symmetric)

with a nontrivial null space. In particular, there exist nonzero w ∈ null(A) such that ||w||A =
√
w⊤Aw = 0, thus

||·||A fails to satisfy the point-separating property on null(A) (i.e., it becomes a “seminorm” on V = Rd). Pick
any nonzero v ∈ null(A). Assuming r > 0, we can select some w0 ∈ range (A) such that w⊤

0 Aw0 = 1. Define
w(α) = w0 + αv and note that w(α)⊤Aw(α) = 1 for all α ∈ R. Thus

||v||∗ = max
w∈Rd: w⊤Aw=1

w⊤v

≥ max
α∈R

w(α)⊤v

= max
α∈R

w⊤
0 v + α ||v||22

=∞

(i.e., ||v||∗ is not finite for v ̸∈ range (A).)
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